Multi-scale image inpainting with label selection based on local statistics

Descripción del Articulo

We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible s...

Descripción completa

Detalles Bibliográficos
Autor: Paredes Zevallos, Daniel Leoncio
Formato: tesis de maestría
Fecha de Publicación:2014
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146509
Enlace del recurso:http://hdl.handle.net/20.500.12404/5578
Nivel de acceso:acceso abierto
Materia:Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
https://purl.org/pe-repo/ocde/ford#2.02.05
id RPUC_f3e8071cd40b5fbe7433d5269f6db1f5
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146509
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Rodríguez Valderrama, Paúl AntonioParedes Zevallos, Daniel Leoncio2014-09-09T22:01:52Z2014-09-09T22:01:52Z20142014-09-09http://hdl.handle.net/20.500.12404/5578We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/AlgoritmosProcesamiento de imágenes digitalesProcesos estocásticoshttps://purl.org/pe-repo/ocde/ford#2.02.05Multi-scale image inpainting with label selection based on local statisticsinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Procesamiento de señales e imágenes digitalesMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de señales e imágenes digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146509oai:repositorio.pucp.edu.pe:20.500.14657/1465092024-06-10 10:54:25.365http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Multi-scale image inpainting with label selection based on local statistics
title Multi-scale image inpainting with label selection based on local statistics
spellingShingle Multi-scale image inpainting with label selection based on local statistics
Paredes Zevallos, Daniel Leoncio
Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Multi-scale image inpainting with label selection based on local statistics
title_full Multi-scale image inpainting with label selection based on local statistics
title_fullStr Multi-scale image inpainting with label selection based on local statistics
title_full_unstemmed Multi-scale image inpainting with label selection based on local statistics
title_sort Multi-scale image inpainting with label selection based on local statistics
author Paredes Zevallos, Daniel Leoncio
author_facet Paredes Zevallos, Daniel Leoncio
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paúl Antonio
dc.contributor.author.fl_str_mv Paredes Zevallos, Daniel Leoncio
dc.subject.es_ES.fl_str_mv Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
topic Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting.
publishDate 2014
dc.date.accessioned.es_ES.fl_str_mv 2014-09-09T22:01:52Z
dc.date.available.es_ES.fl_str_mv 2014-09-09T22:01:52Z
dc.date.created.es_ES.fl_str_mv 2014
dc.date.issued.fl_str_mv 2014-09-09
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/5578
url http://hdl.handle.net/20.500.12404/5578
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639427759603712
score 13.894945
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).