Big Data Analytics Based on Logistical Models

Descripción del Articulo

Over the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper descr...

Descripción completa

Detalles Bibliográficos
Autores: Nywlt, Johannes, Grigutsch, Michael
Formato: artículo
Fecha de Publicación:2015
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/194842
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/194842
Nivel de acceso:acceso abierto
Materia:Analytics
Big data
Competitive advantage
Logistical models
https://purl.org/pe-repo/ocde/ford#5.02.04
id RPUC_ed19d9615884ed717ada31dad8cdd4fc
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/194842
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Nywlt, JohannesGrigutsch, Michael2023-07-21T19:18:24Z2023-07-21T19:18:24Z2015https://repositorio.pucp.edu.pe/index/handle/123456789/194842Over the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper describes how logistical models can be used to conduct big data analytics. It will be explained how such logistic-oriented big data analyses can be applied to improve the logistical performance of producing companies. The results will be illustrated with the help of a best practice project.engPontificia Universidad Católica del Perú. CENTRUMPEurn:issn:1851-6599info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Journal of CENTRUM Cathedra, Vol. 8, Issue 1reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPAnalyticsBig dataCompetitive advantageLogistical modelshttps://purl.org/pe-repo/ocde/ford#5.02.04Big Data Analytics Based on Logistical Modelsinfo:eu-repo/semantics/articleArtículoORIGINALJCC-8.1-105.pdfJCC-8.1-105.pdfTexto completoapplication/pdf201149https://repositorio.pucp.edu.pe/bitstreams/59b8e3a5-b297-4e23-906e-89d115d5988a/download21e285c9b43e2446bc78a39fd122a89bMD51trueAnonymousREADTHUMBNAILJCC-8.1-105.pdf.jpgJCC-8.1-105.pdf.jpgIM Thumbnailimage/jpeg34205https://repositorio.pucp.edu.pe/bitstreams/0ec494c3-b4a0-4b7a-8703-b15348834a7b/downloadee796d81379d41ad388b386d504e7369MD52falseAnonymousREADTEXTJCC-8.1-105.pdf.txtJCC-8.1-105.pdf.txtExtracted texttext/plain18397https://repositorio.pucp.edu.pe/bitstreams/2d2b204c-487a-4b28-98ed-68438bd6596f/downloadde62baf9b667f248d39b02ac171d546dMD53falseAnonymousREAD20.500.14657/194842oai:repositorio.pucp.edu.pe:20.500.14657/1948422025-04-11 09:58:19.54http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.en_US.fl_str_mv Big Data Analytics Based on Logistical Models
title Big Data Analytics Based on Logistical Models
spellingShingle Big Data Analytics Based on Logistical Models
Nywlt, Johannes
Analytics
Big data
Competitive advantage
Logistical models
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Big Data Analytics Based on Logistical Models
title_full Big Data Analytics Based on Logistical Models
title_fullStr Big Data Analytics Based on Logistical Models
title_full_unstemmed Big Data Analytics Based on Logistical Models
title_sort Big Data Analytics Based on Logistical Models
author Nywlt, Johannes
author_facet Nywlt, Johannes
Grigutsch, Michael
author_role author
author2 Grigutsch, Michael
author2_role author
dc.contributor.author.fl_str_mv Nywlt, Johannes
Grigutsch, Michael
dc.subject.en_US.fl_str_mv Analytics
Big data
Competitive advantage
Logistical models
topic Analytics
Big data
Competitive advantage
Logistical models
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Over the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper describes how logistical models can be used to conduct big data analytics. It will be explained how such logistic-oriented big data analyses can be applied to improve the logistical performance of producing companies. The results will be illustrated with the help of a best practice project.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2023-07-21T19:18:24Z
dc.date.available.none.fl_str_mv 2023-07-21T19:18:24Z
dc.date.issued.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://repositorio.pucp.edu.pe/index/handle/123456789/194842
url https://repositorio.pucp.edu.pe/index/handle/123456789/194842
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1851-6599
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. CENTRUM
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. CENTRUM
dc.source.es_ES.fl_str_mv Journal of CENTRUM Cathedra, Vol. 8, Issue 1
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/59b8e3a5-b297-4e23-906e-89d115d5988a/download
https://repositorio.pucp.edu.pe/bitstreams/0ec494c3-b4a0-4b7a-8703-b15348834a7b/download
https://repositorio.pucp.edu.pe/bitstreams/2d2b204c-487a-4b28-98ed-68438bd6596f/download
bitstream.checksum.fl_str_mv 21e285c9b43e2446bc78a39fd122a89b
ee796d81379d41ad388b386d504e7369
de62baf9b667f248d39b02ac171d546d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638673214799872
score 13.914502
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).