Big Data Analytics Based on Logistical Models
Descripción del Articulo
Over the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper descr...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2015 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/194842 |
Enlace del recurso: | https://repositorio.pucp.edu.pe/index/handle/123456789/194842 |
Nivel de acceso: | acceso abierto |
Materia: | Analytics Big data Competitive advantage Logistical models https://purl.org/pe-repo/ocde/ford#5.02.04 |
id |
RPUC_ed19d9615884ed717ada31dad8cdd4fc |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/194842 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Nywlt, JohannesGrigutsch, Michael2023-07-21T19:18:24Z2023-07-21T19:18:24Z2015https://repositorio.pucp.edu.pe/index/handle/123456789/194842Over the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper describes how logistical models can be used to conduct big data analytics. It will be explained how such logistic-oriented big data analyses can be applied to improve the logistical performance of producing companies. The results will be illustrated with the help of a best practice project.engPontificia Universidad Católica del Perú. CENTRUMPEurn:issn:1851-6599info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Journal of CENTRUM Cathedra, Vol. 8, Issue 1reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPAnalyticsBig dataCompetitive advantageLogistical modelshttps://purl.org/pe-repo/ocde/ford#5.02.04Big Data Analytics Based on Logistical Modelsinfo:eu-repo/semantics/articleArtículoORIGINALJCC-8.1-105.pdfJCC-8.1-105.pdfTexto completoapplication/pdf201149https://repositorio.pucp.edu.pe/bitstreams/59b8e3a5-b297-4e23-906e-89d115d5988a/download21e285c9b43e2446bc78a39fd122a89bMD51trueAnonymousREADTHUMBNAILJCC-8.1-105.pdf.jpgJCC-8.1-105.pdf.jpgIM Thumbnailimage/jpeg34205https://repositorio.pucp.edu.pe/bitstreams/0ec494c3-b4a0-4b7a-8703-b15348834a7b/downloadee796d81379d41ad388b386d504e7369MD52falseAnonymousREADTEXTJCC-8.1-105.pdf.txtJCC-8.1-105.pdf.txtExtracted texttext/plain18397https://repositorio.pucp.edu.pe/bitstreams/2d2b204c-487a-4b28-98ed-68438bd6596f/downloadde62baf9b667f248d39b02ac171d546dMD53falseAnonymousREAD20.500.14657/194842oai:repositorio.pucp.edu.pe:20.500.14657/1948422025-04-11 09:58:19.54http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.en_US.fl_str_mv |
Big Data Analytics Based on Logistical Models |
title |
Big Data Analytics Based on Logistical Models |
spellingShingle |
Big Data Analytics Based on Logistical Models Nywlt, Johannes Analytics Big data Competitive advantage Logistical models https://purl.org/pe-repo/ocde/ford#5.02.04 |
title_short |
Big Data Analytics Based on Logistical Models |
title_full |
Big Data Analytics Based on Logistical Models |
title_fullStr |
Big Data Analytics Based on Logistical Models |
title_full_unstemmed |
Big Data Analytics Based on Logistical Models |
title_sort |
Big Data Analytics Based on Logistical Models |
author |
Nywlt, Johannes |
author_facet |
Nywlt, Johannes Grigutsch, Michael |
author_role |
author |
author2 |
Grigutsch, Michael |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Nywlt, Johannes Grigutsch, Michael |
dc.subject.en_US.fl_str_mv |
Analytics Big data Competitive advantage Logistical models |
topic |
Analytics Big data Competitive advantage Logistical models https://purl.org/pe-repo/ocde/ford#5.02.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.04 |
description |
Over the past years, a change of feedback data in terms of quantity, quality, and timeliness could be observed in production. The generation of high resolution production feedback data enables producing companies to apply big data analytics in order to create competitive advantages. This paper describes how logistical models can be used to conduct big data analytics. It will be explained how such logistic-oriented big data analyses can be applied to improve the logistical performance of producing companies. The results will be illustrated with the help of a best practice project. |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T19:18:24Z |
dc.date.available.none.fl_str_mv |
2023-07-21T19:18:24Z |
dc.date.issued.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.pucp.edu.pe/index/handle/123456789/194842 |
url |
https://repositorio.pucp.edu.pe/index/handle/123456789/194842 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1851-6599 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú. CENTRUM |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú. CENTRUM |
dc.source.es_ES.fl_str_mv |
Journal of CENTRUM Cathedra, Vol. 8, Issue 1 |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/59b8e3a5-b297-4e23-906e-89d115d5988a/download https://repositorio.pucp.edu.pe/bitstreams/0ec494c3-b4a0-4b7a-8703-b15348834a7b/download https://repositorio.pucp.edu.pe/bitstreams/2d2b204c-487a-4b28-98ed-68438bd6596f/download |
bitstream.checksum.fl_str_mv |
21e285c9b43e2446bc78a39fd122a89b ee796d81379d41ad388b386d504e7369 de62baf9b667f248d39b02ac171d546d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638673214799872 |
score |
13.914502 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).