An application of discrete time survival models to analyze student dropouts at a private university in Peru

Descripción del Articulo

Discrete-time survival models are discussed and applied to the study of which factors are associated with student dropouts at a private university in Lima, Per_u. We studied the characteristics of 26; 790 incoming students enrolled between 2004 and 2012 in all the under-graduate programs at the Univ...

Descripción completa

Detalles Bibliográficos
Autor: Pebes Trujillo, Miguel Raúl
Formato: tesis de maestría
Fecha de Publicación:2015
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/144827
Enlace del recurso:http://hdl.handle.net/20.500.12404/6992
Nivel de acceso:acceso abierto
Materia:Sobrevivencia (Biometría)
Biometría
Análisis de series cronológicas
Análisis de regresión
Estudiantes universitarios
https://purl.org/pe-repo/ocde/ford#1.01.03
id RPUC_d5a53ab2eb0602c600c232841874a955
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/144827
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Sal y Rosas Celi, Víctor GiancarloPebes Trujillo, Miguel Raúl2016-06-20T21:14:00Z2016-06-20T21:14:00Z20152016-06-20http://hdl.handle.net/20.500.12404/6992Discrete-time survival models are discussed and applied to the study of which factors are associated with student dropouts at a private university in Lima, Per_u. We studied the characteristics of 26; 790 incoming students enrolled between 2004 and 2012 in all the under-graduate programs at the University. The analysis include the estimation of the survival and hazard functions using the Kaplan-Meier method and the _tting of parametric models using the Cox proportional hazards regression and the Logistic regression for survival analysis, this last one, in order to include time varying variables as predictors. During the period of analysis, the cumulative probability of remain at the University after _ve years was 73.7% [95% CI: 73.1% - 74.4%]. In any period the hazard is greater than 4.4% and this highest value is reached in the 3rd semester. In a multivariate analysis, we found that academic factors (area of study, type of admission, standardized academic performance index, and the percentage of passed credits); economic factors (type of residence, and payment scale); and sociodemographic factors (mother education level, indicators of whether or not parents are alive, and the age of the student) were associated with the risk of dropout.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Sobrevivencia (Biometría)BiometríaAnálisis de series cronológicasAnálisis de regresiónEstudiantes universitarioshttps://purl.org/pe-repo/ocde/ford#1.01.03An application of discrete time survival models to analyze student dropouts at a private university in Peruinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en EstadísticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEstadística40361284542037https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/144827oai:repositorio.pucp.edu.pe:20.500.14657/1448272024-06-10 10:21:31.382http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv An application of discrete time survival models to analyze student dropouts at a private university in Peru
title An application of discrete time survival models to analyze student dropouts at a private university in Peru
spellingShingle An application of discrete time survival models to analyze student dropouts at a private university in Peru
Pebes Trujillo, Miguel Raúl
Sobrevivencia (Biometría)
Biometría
Análisis de series cronológicas
Análisis de regresión
Estudiantes universitarios
https://purl.org/pe-repo/ocde/ford#1.01.03
title_short An application of discrete time survival models to analyze student dropouts at a private university in Peru
title_full An application of discrete time survival models to analyze student dropouts at a private university in Peru
title_fullStr An application of discrete time survival models to analyze student dropouts at a private university in Peru
title_full_unstemmed An application of discrete time survival models to analyze student dropouts at a private university in Peru
title_sort An application of discrete time survival models to analyze student dropouts at a private university in Peru
author Pebes Trujillo, Miguel Raúl
author_facet Pebes Trujillo, Miguel Raúl
author_role author
dc.contributor.advisor.fl_str_mv Sal y Rosas Celi, Víctor Giancarlo
dc.contributor.author.fl_str_mv Pebes Trujillo, Miguel Raúl
dc.subject.es_ES.fl_str_mv Sobrevivencia (Biometría)
Biometría
Análisis de series cronológicas
Análisis de regresión
Estudiantes universitarios
topic Sobrevivencia (Biometría)
Biometría
Análisis de series cronológicas
Análisis de regresión
Estudiantes universitarios
https://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.03
description Discrete-time survival models are discussed and applied to the study of which factors are associated with student dropouts at a private university in Lima, Per_u. We studied the characteristics of 26; 790 incoming students enrolled between 2004 and 2012 in all the under-graduate programs at the University. The analysis include the estimation of the survival and hazard functions using the Kaplan-Meier method and the _tting of parametric models using the Cox proportional hazards regression and the Logistic regression for survival analysis, this last one, in order to include time varying variables as predictors. During the period of analysis, the cumulative probability of remain at the University after _ve years was 73.7% [95% CI: 73.1% - 74.4%]. In any period the hazard is greater than 4.4% and this highest value is reached in the 3rd semester. In a multivariate analysis, we found that academic factors (area of study, type of admission, standardized academic performance index, and the percentage of passed credits); economic factors (type of residence, and payment scale); and sociodemographic factors (mother education level, indicators of whether or not parents are alive, and the age of the student) were associated with the risk of dropout.
publishDate 2015
dc.date.created.es_ES.fl_str_mv 2015
dc.date.accessioned.es_ES.fl_str_mv 2016-06-20T21:14:00Z
dc.date.available.es_ES.fl_str_mv 2016-06-20T21:14:00Z
dc.date.issued.fl_str_mv 2016-06-20
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/6992
url http://hdl.handle.net/20.500.12404/6992
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638575261024256
score 13.947773
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).