Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes

Descripción del Articulo

MAX phase thin films can be fabricated through firstly depositing a precursor thin film consisting of the initial elements M, A, and X close to the MAX phase stoichiometry employing physical vapor deposition techniques with a subsequent thermal annealing process. This work presents different deposit...

Descripción completa

Detalles Bibliográficos
Autor: Miranda Marti, Marta
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/190469
Enlace del recurso:http://hdl.handle.net/20.500.12404/24449
Nivel de acceso:acceso abierto
Materia:Películas delgadas
Espectrometría
Nanopartículas
https://purl.org/pe-repo/ocde/ford#2.00.00
id RPUC_d00fbc75e675ba822dff25b6d1a641d3
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/190469
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
title Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
spellingShingle Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
Miranda Marti, Marta
Películas delgadas
Espectrometría
Nanopartículas
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
title_full Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
title_fullStr Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
title_full_unstemmed Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
title_sort Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenes
author Miranda Marti, Marta
author_facet Miranda Marti, Marta
author_role author
dc.contributor.advisor.fl_str_mv Grieseler, Rolf
dc.contributor.author.fl_str_mv Miranda Marti, Marta
dc.subject.es_ES.fl_str_mv Películas delgadas
Espectrometría
Nanopartículas
topic Películas delgadas
Espectrometría
Nanopartículas
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description MAX phase thin films can be fabricated through firstly depositing a precursor thin film consisting of the initial elements M, A, and X close to the MAX phase stoichiometry employing physical vapor deposition techniques with a subsequent thermal annealing process. This work presents different deposition configurations (multilayer and co-sputtering) for the fabrication of the Ti2AlC and Ti3AlC2 MAX phase thin films by magnetron sputtering from three elemental targets (Ti, Al, and C). It was found that the depositions followed mainly amorphous thus the MAX phase was not able to form. By implementing the deposition parameters such as temperature and substrate voltage, the deposition morphology could be tailored to crystalline and MAX phases could be created. Moreover, Ti2AlC and Ti3AlC2 nanostructured MAX phase thin films were fabricated by magnetron sputtering with three elemental targets (Ti, Al, and C) at oblique angle, resulting in a columnar thin film, and the properties of the thin film were described as a function of the column tilt angle. Lastly, the MAX phases at normal configuration and at oblique angle configuration were wet etched and the properties of the resulting MXene thin films were analyzed. It was demonstrated that only the surface of the sample was attacked by the etching solution. Thus, only the surface of the MAX phase was transformed into MXene. This hypothesis was verified by multiple characterizations such as e.g., X-Ray Diffraction and Raman spectroscopy to understand the possible morphology and chemical transformation and its influence on the etched thin film properties. The aim of this work is to unravel the connection between the morphology of the MAX phase thin films and the properties of the resulting MXenes. By understanding this relationship, it would be possible to tailor their features for specific applications.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-08T00:04:37Z
dc.date.available.none.fl_str_mv 2023-03-08T00:04:37Z
dc.date.created.none.fl_str_mv 2023
dc.date.issued.fl_str_mv 2023-03-07
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/24449
url http://hdl.handle.net/20.500.12404/24449
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639228257533952
spelling Grieseler, RolfMiranda Marti, Marta2023-03-08T00:04:37Z2023-03-08T00:04:37Z20232023-03-07http://hdl.handle.net/20.500.12404/24449MAX phase thin films can be fabricated through firstly depositing a precursor thin film consisting of the initial elements M, A, and X close to the MAX phase stoichiometry employing physical vapor deposition techniques with a subsequent thermal annealing process. This work presents different deposition configurations (multilayer and co-sputtering) for the fabrication of the Ti2AlC and Ti3AlC2 MAX phase thin films by magnetron sputtering from three elemental targets (Ti, Al, and C). It was found that the depositions followed mainly amorphous thus the MAX phase was not able to form. By implementing the deposition parameters such as temperature and substrate voltage, the deposition morphology could be tailored to crystalline and MAX phases could be created. Moreover, Ti2AlC and Ti3AlC2 nanostructured MAX phase thin films were fabricated by magnetron sputtering with three elemental targets (Ti, Al, and C) at oblique angle, resulting in a columnar thin film, and the properties of the thin film were described as a function of the column tilt angle. Lastly, the MAX phases at normal configuration and at oblique angle configuration were wet etched and the properties of the resulting MXene thin films were analyzed. It was demonstrated that only the surface of the sample was attacked by the etching solution. Thus, only the surface of the MAX phase was transformed into MXene. This hypothesis was verified by multiple characterizations such as e.g., X-Ray Diffraction and Raman spectroscopy to understand the possible morphology and chemical transformation and its influence on the etched thin film properties. The aim of this work is to unravel the connection between the morphology of the MAX phase thin films and the properties of the resulting MXenes. By understanding this relationship, it would be possible to tailor their features for specific applications.MAX-Phasen- Dünnschichten können hergestellt werden, indem zunächst eine Vorläufer- Dünnschicht mit den drei Elementen M, A und X nahe der Stöchiometrie der MAXPhasen durch physikalische Abscheidung aus der Gasphase abgeschieden wird, gefolgt von einem thermischen Glühprozess. In dieser Arbeit werden verschiedene Abscheidungskonfigurationen (Multilayer und Co-Sputtern) für die Herstellung von Ti2AlC und Ti3AlC2-MAX-Phasen-Dünnschichten durch Magnetron-Sputtern aus drei elementaren Targets (Ti, Al und C) vorgestellt. Es wurde festgestellt, dass die Abscheidungen hauptsächlich amorph erfolgten, so dass sich die MAX-Phase nicht bilden konnte. Durch Einstellen der Abscheidungsparameter wie Temperatur und Substratspannung konnte die Abscheidungsmorphologie auf kristalline beeinflusst werden. Darüber hinaus wurden Ti2AlC and Ti3AlC2 nanostrukturierte MAX-Phasen - Dünnschichten durch Magnetronsputtern mit drei elementaren Targets (Ti, Al und C) in einem schrägen Winkel hergestellt (Oblique Angle Deposition), was zu einer säulenförmigen Dünnschicht führte, und die Eigenschaften der Dünnschicht wurden als Funktion des Säulenwinkels beschrieben. Schließlich wurden die MAX-Phasen in normaler und OAD-Konfiguration geätzt und die Eigenschaften der resultierenden MXen-Dünnschichten analysiert. Es zeigte sich, dass nur die Oberfläche der Probe von der Ätzlösung angegriffen wurde. Somit wurde nur die Oberfläche der MAX-Phase in MXen umgewandelt. Diese Hypothese wurde durch verschiedene Untersuchungen wie Röntgenbeugung und Raman-Spektroskopie verifiziert, um die mögliche Morphologie und chemische Umwandlung und deren Einfluss auf die Eigenschaften der geätzten Dünnschicht zu verstehen. Ziel dieser Arbeit ist, den Zusammenhang zwischen der Morphologie der MAX-Phasen- Dünnschichten und den Eigenschaften der entstehenden MXene zu entschlüsseln. Durch das Verständnis dieses Zusammenhangs wäre es möglich, die Eigenschaften dieser Schichten für bestimmte Anwendungen zu optimieren.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Películas delgadasEspectrometríaNanopartículashttps://purl.org/pe-repo/ocde/ford#2.00.00Synthesis and characterization of nanostructured ternary MAX-phase thin films prepared by magnetron sputtering as precursors for twodimensional MXenesinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería y Ciencia de los MaterialesMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Ingeniería y Ciencia de los Materiales001660902https://orcid.org/0000-0001-5307-7755PAK607000713017Schaaf, PeterGrieseler, RolfTorres Fernandez, Carlos Enriquehttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis20.500.14657/190469oai:repositorio.pucp.edu.pe:20.500.14657/1904692024-06-10 10:29:15.451http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.808131
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).