Clasificación automática de eventos en videos de fútbol utilizando redes convolucionales profundas
Descripción del Articulo
La forma en que las nuevas generaciones consumen y experimentan el deporte especialmente el fútbol, ha generado oportunidades significativas en la difusión de contenidos deportivos en plataformas no tradicionales y en formatos más reducidos. Sin embargo, recuperar información con contenido semántico...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2024 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/200116 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/28089 |
Nivel de acceso: | acceso embargado |
Materia: | Futbol Procesamiento de imágenes digitales Redes neuronales (Computación) https://purl.org/pe-repo/ocde/ford#1.02.00 |
Sumario: | La forma en que las nuevas generaciones consumen y experimentan el deporte especialmente el fútbol, ha generado oportunidades significativas en la difusión de contenidos deportivos en plataformas no tradicionales y en formatos más reducidos. Sin embargo, recuperar información con contenido semántico de eventos deportivos presentados en formato de video no es tarea sencilla y plantea diversos retos. En videos de partidos de fútbol entre otros retos tenemos: las posiciones de las cámaras de grabación, la superposición de eventos o jugadas y la ingente cantidad de fotogramas disponibles. Para generar resúmenes de calidad y que sean interesantes para el aficionado, en esta investigación se desarrolló un sistema basado en Redes Convolucionales Profundas para clasificar automáticamente eventos o jugadas que ocurren durante un partido de fútbol. Para ello se construyó una base de datos a partir de videos de fútbol descargados de SoccerNet, la cual contiene 1,959 videoclips de 5 eventos: saques de meta, tiros de esquina, faltas cometidas, tiros libres indirectos y remates al arco. Para la experimentación se utilizó técnicas de preprocesamiento de video, una arquitectura convolucional propia y se aplicó transfer learning con modelos como ResNet50, EfficientNetb0, Visión Transformers y Video Visión Transformers. El mejor resultado se obtuvo con una EfficentNetb0 modificada en su primera capa convolucional, con la cual se obtuvo un 91% accuracy, y una precisión de 100% para los saques de meta, 92% para los tiros de esquina, 90% para las faltas cometidas, 88% para los tiros libres indirectos y 89% para los remates al arco. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).