Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
Descripción del Articulo
Measuring poverty is a first step to the design of effective public policies, however, it is also essential to know where the poor are located. The main objective of this research is to evaluate the spatial heterogeneity of the factors that influence monetary poverty for each district in Peru. We ap...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/186822 |
Enlace del recurso: | https://revistas.pucp.edu.pe/index.php/economia/article/view/23956/22770 https://doi.org/10.18800/economia.202101.006 |
Nivel de acceso: | acceso abierto |
Materia: | Geographically Weighted Regression Monetary poverty Poverty mapping Spatial nonstationary Peru Spatial heterogeneity https://purl.org/pe-repo/ocde/ford#5.02.01 |
id |
RPUC_baf04ae72c5d2c265011859ea271fd58 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/186822 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Palomino, JuanSánchez, Thyara2022-10-03T16:47:04Z2022-10-03T21:18:38Z2022-10-03T16:47:04Z2022-10-03T21:18:38Z2021-05-06https://revistas.pucp.edu.pe/index.php/economia/article/view/23956/22770https://doi.org/10.18800/economia.202101.006Measuring poverty is a first step to the design of effective public policies, however, it is also essential to know where the poor are located. The main objective of this research is to evaluate the spatial heterogeneity of the factors that influence monetary poverty for each district in Peru. We apply a Geographically Weighted Regression (GWR) approach, which allows us to capture the non-stationarity of the hidden data and to provide coefficients for each district, unlike the OLS model. This research mainly uses the Poverty Map and the Population and Household Census of Peru, both from 2007 and 2017. The overriding findings of our results indicate that female headship, secondary education, electricity, and sanitation services are directly associated with poverty reduction at the local level. For 2007, significant effects are mainly concentrated in the districts of Pasco, Lima and Cajamarca regions. For 2017, the results show a shift towards districts of Junín, Huancavelica, and Cajamarca regions. Likewise, it is highlighted that the highest mean negative effect on poverty is generated by Secondary Education in the GWR estimates; while malnutrition represents the highest mean positive effect on poverty for the level and intercensal models. Finally, the empirical evidence found in this research can help establish better policy designs at the district level.application/pdfengPontificia Universidad Católica del PerúPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 44 Issue 87 (2021)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPGeographically Weighted RegressionMonetary povertyPoverty mappingSpatial nonstationaryPeruSpatial heterogeneityhttps://purl.org/pe-repo/ocde/ford#5.02.01Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peruinfo:eu-repo/semantics/articleArtículo20.500.14657/186822oai:repositorio.pucp.edu.pe:20.500.14657/1868222025-03-21 15:33:13.916http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.en_US.fl_str_mv |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
title |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
spellingShingle |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru Palomino, Juan Geographically Weighted Regression Monetary poverty Poverty mapping Spatial nonstationary Peru Spatial heterogeneity https://purl.org/pe-repo/ocde/ford#5.02.01 |
title_short |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
title_full |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
title_fullStr |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
title_full_unstemmed |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
title_sort |
Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru |
author |
Palomino, Juan |
author_facet |
Palomino, Juan Sánchez, Thyara |
author_role |
author |
author2 |
Sánchez, Thyara |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Palomino, Juan Sánchez, Thyara |
dc.subject.en_US.fl_str_mv |
Geographically Weighted Regression Monetary poverty Poverty mapping Spatial nonstationary Peru Spatial heterogeneity |
topic |
Geographically Weighted Regression Monetary poverty Poverty mapping Spatial nonstationary Peru Spatial heterogeneity https://purl.org/pe-repo/ocde/ford#5.02.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.01 |
description |
Measuring poverty is a first step to the design of effective public policies, however, it is also essential to know where the poor are located. The main objective of this research is to evaluate the spatial heterogeneity of the factors that influence monetary poverty for each district in Peru. We apply a Geographically Weighted Regression (GWR) approach, which allows us to capture the non-stationarity of the hidden data and to provide coefficients for each district, unlike the OLS model. This research mainly uses the Poverty Map and the Population and Household Census of Peru, both from 2007 and 2017. The overriding findings of our results indicate that female headship, secondary education, electricity, and sanitation services are directly associated with poverty reduction at the local level. For 2007, significant effects are mainly concentrated in the districts of Pasco, Lima and Cajamarca regions. For 2017, the results show a shift towards districts of Junín, Huancavelica, and Cajamarca regions. Likewise, it is highlighted that the highest mean negative effect on poverty is generated by Secondary Education in the GWR estimates; while malnutrition represents the highest mean positive effect on poverty for the level and intercensal models. Finally, the empirical evidence found in this research can help establish better policy designs at the district level. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-10-03T16:47:04Z 2022-10-03T21:18:38Z |
dc.date.available.none.fl_str_mv |
2022-10-03T16:47:04Z 2022-10-03T21:18:38Z |
dc.date.issued.fl_str_mv |
2021-05-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://revistas.pucp.edu.pe/index.php/economia/article/view/23956/22770 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18800/economia.202101.006 |
url |
https://revistas.pucp.edu.pe/index.php/economia/article/view/23956/22770 https://doi.org/10.18800/economia.202101.006 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2304-4306 urn:issn:0254-4415 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_ES.fl_str_mv |
Economía; Volume 44 Issue 87 (2021) |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638780843786240 |
score |
13.87115 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).