Studies on obstacle detection and path planning for a quadrotor system

Descripción del Articulo

Autonomous systems are one interesting topic recently investigated; for land and aerial vehicles; however, the main limitation of aerial vehicles is the weight to carry on-board, since the power consumed depends on this and hardware like sensors and processor is limited. The present thesis develops...

Descripción completa

Detalles Bibliográficos
Autor: Valencia Mamani, Dalthon Abel
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/145967
Enlace del recurso:http://hdl.handle.net/20.500.12404/9660
Nivel de acceso:acceso abierto
Materia:Aeronaves--Control automático
Procesamiento de imágenes digitales
Detectores
https://purl.org/pe-repo/ocde/ford#2.02.03
id RPUC_975a65a4d90295d59a85723f23324cb1
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/145967
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Studies on obstacle detection and path planning for a quadrotor system
title Studies on obstacle detection and path planning for a quadrotor system
spellingShingle Studies on obstacle detection and path planning for a quadrotor system
Valencia Mamani, Dalthon Abel
Aeronaves--Control automático
Procesamiento de imágenes digitales
Detectores
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Studies on obstacle detection and path planning for a quadrotor system
title_full Studies on obstacle detection and path planning for a quadrotor system
title_fullStr Studies on obstacle detection and path planning for a quadrotor system
title_full_unstemmed Studies on obstacle detection and path planning for a quadrotor system
title_sort Studies on obstacle detection and path planning for a quadrotor system
author Valencia Mamani, Dalthon Abel
author_facet Valencia Mamani, Dalthon Abel
author_role author
dc.contributor.advisor.fl_str_mv Cuéllar Córdova, Francisco Fabián
dc.contributor.author.fl_str_mv Valencia Mamani, Dalthon Abel
dc.subject.es_ES.fl_str_mv Aeronaves--Control automático
Procesamiento de imágenes digitales
Detectores
topic Aeronaves--Control automático
Procesamiento de imágenes digitales
Detectores
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Autonomous systems are one interesting topic recently investigated; for land and aerial vehicles; however, the main limitation of aerial vehicles is the weight to carry on-board, since the power consumed depends on this and hardware like sensors and processor is limited. The present thesis develops an application of digital image processing to detect obstacles using only a monocamera, there are some approaches but the present report wants to focus on the distance estimation approach that, in future works, can be combined with other methods since this approach is more general. The distance estimation approach uses feature detection algorithms in two consecutive images, matching them and thus estimate the obstacle position. The estimation is computed through a mathematical model of the camera and projections between those two images. There are many parameters to improve final results and the best parameters are found and tested with consecutive images, which were captured every 0.5m along a straight path of 5m. Fraunhofer position modules are tested with the entire algorithm. Finally, in order to establish the new path without obstacles, an optimal binary integer programming problem is proposed, adapting the approach using results obtained from the distance estimation and obstacle detection. Resulting data is suitable for combining them with information obtained from conventional sensors, such as ultrasonic sensors. The obtained mean error is between 1% and 12% in short distances (less than 2.5 m) and greater with longer distances. The complexity of this study lies in the use of a single camera for the capture of frontal images and obtaining 3D information of the environment, the computation of the obstacle detection algorithm is tested off-line and the path-planning algorithm is proposed with detected keypoints in the background.
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-11-06T23:23:45Z
dc.date.available.es_ES.fl_str_mv 2017-11-06T23:23:45Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-11-06
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/9660
url http://hdl.handle.net/20.500.12404/9660
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638963990167552
spelling Cuéllar Córdova, Francisco FabiánValencia Mamani, Dalthon Abel2017-11-06T23:23:45Z2017-11-06T23:23:45Z20172017-11-06http://hdl.handle.net/20.500.12404/9660Autonomous systems are one interesting topic recently investigated; for land and aerial vehicles; however, the main limitation of aerial vehicles is the weight to carry on-board, since the power consumed depends on this and hardware like sensors and processor is limited. The present thesis develops an application of digital image processing to detect obstacles using only a monocamera, there are some approaches but the present report wants to focus on the distance estimation approach that, in future works, can be combined with other methods since this approach is more general. The distance estimation approach uses feature detection algorithms in two consecutive images, matching them and thus estimate the obstacle position. The estimation is computed through a mathematical model of the camera and projections between those two images. There are many parameters to improve final results and the best parameters are found and tested with consecutive images, which were captured every 0.5m along a straight path of 5m. Fraunhofer position modules are tested with the entire algorithm. Finally, in order to establish the new path without obstacles, an optimal binary integer programming problem is proposed, adapting the approach using results obtained from the distance estimation and obstacle detection. Resulting data is suitable for combining them with information obtained from conventional sensors, such as ultrasonic sensors. The obtained mean error is between 1% and 12% in short distances (less than 2.5 m) and greater with longer distances. The complexity of this study lies in the use of a single camera for the capture of frontal images and obtaining 3D information of the environment, the computation of the obstacle detection algorithm is tested off-line and the path-planning algorithm is proposed with detected keypoints in the background.Autonome Systeme sind ein interessantes Thema vor kurzem untersucht; für Land- und Luftfahrzeuge; Allerdings ist die Hauptbegrenzung von Luftfahrzeugen das Gewicht, um an Bord zu tragen, da die verbrauchte Energie davon abhängt und Hardware wie Sensoren und Prozessor begrenzt ist. Die vorliegende Arbeit entwickelt eine Anwendung der digitalen Bildverarbeitung zur Erkennung von Hindernissen, die nur eine Monokamera verwenden, es gibt einige Ansätze, aber der vorliegende Bericht will sich auf den Abstandsschätzungsansatz konzentrieren, der in Zukunft mit anderen Methoden kombiniert werden kann, da dieser Ansatz ist allgemeiner. Der Abstandsschätzungsansatz verwendet Merkmalserkennungsalgorithmen in zwei aufeinanderfolgenden Bildern, passt sie an und schätzt somit die Hindernisposition ab. Die Schätzung wird durch ein mathematisches Modell der Kamera und Projektionen zwischen diesen beiden Bildern berechnet. Es gibt viele Parameter, um die endgültigen Ergebnisse zu verbessern, und die besten Parameter werden mit aufeinanderfolgenden Bildern gefunden und getestet, die alle 0,5 m auf einem geraden Weg von 5 m erfasst wurden. Fraunhofer-Positionsmodule werden mit dem gesamten Algorithmus getestet. Schließlich wird, um den neuen Weg ohne Hindernisse zu etablieren, ein optimales Binär-Integer-Programmierproblem vorgeschlagen, das den Ansatz unter Verwendung von Ergebnissen, die aus der Abstandsschätzung und der Hinderniserkennung erhalten wurden, anpasst. Die daraus resultierenden Daten eignen sich zur Kombination mit Informationen aus konventionellen Sensoren wie Ultraschallsensoren. Der erhaltene mittlere Fehler liegt zwischen 1 % und 12 % in kurzen Abständen (weniger als 2,5 m) und größer mit längeren Abständen. Die Komplexität dieser Studie liegt in der Verwendung einer einzigen Kamera für die Erfassung von Frontalbildern und dem Erhalten von 3D-Informationen der Umgebung, wird die Berechnung des Hinderniserfassungsalgorithmus off-line getestet und derWegplanungsalgorithmus wird mit erkannten Keypoints vorgeschlagen im Hintergrund.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Aeronaves--Control automáticoProcesamiento de imágenes digitalesDetectoreshttps://purl.org/pe-repo/ocde/ford#2.02.03Studies on obstacle detection and path planning for a quadrotor systeminfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización10809099712037https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/145967oai:repositorio.pucp.edu.pe:20.500.14657/1459672024-06-10 10:10:54.225http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.896348
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).