Inferencia bayesiana aproximada del modelo espacio-temporal usando NNGP

Descripción del Articulo

Los modelos espacio-temporales nos permiten estudiar la distribución espacial de una variable en el tiempo. Por ejemplo, se puede estudiar la distribución espacial del material particulado en un país a través de los años, dado que las concentraciones de material particulado en estaciones cercanas pu...

Descripción completa

Detalles Bibliográficos
Autor: Benites Alfaro, Omar Eduardo
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/195343
Enlace del recurso:http://hdl.handle.net/20.500.12404/25759
Nivel de acceso:acceso abierto
Materia:Estadística bayesiana
Geografía matemática
Modelos matemáticos
https://purl.org/pe-repo/ocde/ford#5.05.01
Descripción
Sumario:Los modelos espacio-temporales nos permiten estudiar la distribución espacial de una variable en el tiempo. Por ejemplo, se puede estudiar la distribución espacial del material particulado en un país a través de los años, dado que las concentraciones de material particulado en estaciones cercanas pueden ser similares y la concentración en una estación en un año puede depender de la concentración en la misma estación el año anterior anterior. En esta tesis se propone usar un modelo espacio-temporal a través del proceso gaussiano de vecinos más cercanos. Para implementar este modelo y aplicarlo en grandes bases de datos se propone usar inferencia bayesiana a través del método de integración aproximada de Laplace (INLA). La bondad de ajuste del modelo y su eficiencia se estudia a través de simulaciones. Finalmente se aplica el modelo implementado a una base de datos reales.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).