Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
Descripción del Articulo
Flame acceleration plays an important role in determining the onset of deflagration-to-detonation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separation distance between obstacles...
| Autores: | , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/205122 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14657/205122 https://doi.org/10.1007/s10494-025-00691-2 |
| Nivel de acceso: | acceso abierto |
| Materia: | Flame acceleration Obstacle separation Methane/air mixture Experiments Numerical modeling Metanol Combustibles https://purl.org/pe-repo/ocde/ford#1.03.00 |
| id |
RPUC_8a88f7bd5a8cd4e3a9c557f6e54b7cc8 |
|---|---|
| oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/205122 |
| network_acronym_str |
RPUC |
| network_name_str |
PUCP-Institucional |
| repository_id_str |
2905 |
| dc.title.en_US.fl_str_mv |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| title |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| spellingShingle |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel Valencia, Sebastian Flame acceleration Obstacle separation Methane/air mixture Experiments Numerical modeling Metanol Combustibles https://purl.org/pe-repo/ocde/ford#1.03.00 |
| title_short |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| title_full |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| title_fullStr |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| title_full_unstemmed |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| title_sort |
Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel |
| author |
Valencia, Sebastian |
| author_facet |
Valencia, Sebastian Illacanchi, Fernando Azevedo, Lucas De Mendiburu, Andres Z. Bravo, Luis Khare, Prashant Celis, Cesar |
| author_role |
author |
| author2 |
Illacanchi, Fernando Azevedo, Lucas De Mendiburu, Andres Z. Bravo, Luis Khare, Prashant Celis, Cesar |
| author2_role |
author author author author author author |
| dc.contributor.affiliation.none.fl_str_mv |
Pontificia Universidad Católica del Perú. Departamento de Ingeniería |
| dc.contributor.author.fl_str_mv |
Valencia, Sebastian Illacanchi, Fernando Azevedo, Lucas De Mendiburu, Andres Z. Bravo, Luis Khare, Prashant Celis, Cesar |
| dc.subject.en_US.fl_str_mv |
Flame acceleration Obstacle separation Methane/air mixture Experiments Numerical modeling |
| topic |
Flame acceleration Obstacle separation Methane/air mixture Experiments Numerical modeling Metanol Combustibles https://purl.org/pe-repo/ocde/ford#1.03.00 |
| dc.subject.es_ES.fl_str_mv |
Metanol Combustibles |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.03.00 |
| description |
Flame acceleration plays an important role in determining the onset of deflagration-to-detonation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separation distance between obstacles (S) inside a 1050 mm closed duct on the acceleration of premixed flames fueled by a stoichiometric methane/air mixture at 40 kPa pressure. The studied duct geometry features a 96 mm x 96 mm square cross section and includes five obstacles along the wall with a 75% blockage ratio, each delineated by side dimensions of 96 mm x 96 mm and square holes of 48 mm x 48 mm. Experimental and direct numerical simulations (DNS) techniques are employed here to investigate the flame acceleration dynamics under different operating conditions. More specifically, high-speed video captures the dynamics of the flame front evolution from experiments, while DNS are carried out using the PeleC fully compressive Navier Stokes solver, including finite-rate chemistry and adaptive mesh refinement (AMR). A comparison between experimental and numerical results for S = 1.0 Dₕ shows reasonable agreement in flame tip velocity and reduced position, supporting the applicability of a two-dimensional DNS model like the one employed here. In contrast, for S = 1.5 Dₕ the numerical results fail to reproduce the experimentally observed flame structure and acceleration, likely due to missing three-dimensional effects. Numerical simulations for different S values ranging from 0.75 to 1.5 Dₕ reveal that obstacle spacing has a strong influence on flame acceleration mechanisms. As S increases indeed, the flame shifts from geometry-constrained jetting to instability-driven propagation involving vortex generation and pressure-wave interactions. The case with S = 1.25 Dₕ yields the highest flame tip velocity, even though the one with S = 1.5 Dₕ exhibits greater vorticity and pressure amplitudes. This is attributed to the reduced flame–vortex coupling coherence in the S = 1.5 Dₕ case, which results in more chaotic flame dynamics and lower flame acceleration efficiency. These results offer new insight into the mechanisms of flame acceleration under confinement and highlight obstacle spacing as a key design parameter for optimizing performance and safety in combustion systems. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-18T16:38:10Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14657/205122 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s10494-025-00691-2 |
| url |
http://hdl.handle.net/20.500.14657/205122 https://doi.org/10.1007/s10494-025-00691-2 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:1386-6184 |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.es_ES.fl_str_mv |
Springer |
| dc.publisher.country.none.fl_str_mv |
US |
| dc.source.es_ES.fl_str_mv |
Flow, Turbulence and Combustion; (2025) |
| dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Institucional |
| collection |
PUCP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/02ca9571-325b-45df-bdd8-8046864a2871/download https://repositorio.pucp.edu.pe/bitstreams/42f10bf4-802d-48a0-92b1-0aa51667ec2a/download https://repositorio.pucp.edu.pe/bitstreams/9fce48f7-1d2a-43bc-b360-99e50f05d56e/download |
| bitstream.checksum.fl_str_mv |
79bb02dcff958908de0ea35f0af9b740 a2b8a5d0a47489d4e1ecb46d0b4dd6fa aefd0d97cb2b4f3e4191c46941e64e03 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
| repository.mail.fl_str_mv |
repositorio@pucp.pe |
| _version_ |
1850224137783476224 |
| spelling |
Valencia, SebastianIllacanchi, FernandoAzevedo, Lucas DeMendiburu, Andres Z.Bravo, LuisKhare, PrashantCelis, CesarPontificia Universidad Católica del Perú. Departamento de Ingeniería2025-11-18T16:38:10Z2025http://hdl.handle.net/20.500.14657/205122https://doi.org/10.1007/s10494-025-00691-2Flame acceleration plays an important role in determining the onset of deflagration-to-detonation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separation distance between obstacles (S) inside a 1050 mm closed duct on the acceleration of premixed flames fueled by a stoichiometric methane/air mixture at 40 kPa pressure. The studied duct geometry features a 96 mm x 96 mm square cross section and includes five obstacles along the wall with a 75% blockage ratio, each delineated by side dimensions of 96 mm x 96 mm and square holes of 48 mm x 48 mm. Experimental and direct numerical simulations (DNS) techniques are employed here to investigate the flame acceleration dynamics under different operating conditions. More specifically, high-speed video captures the dynamics of the flame front evolution from experiments, while DNS are carried out using the PeleC fully compressive Navier Stokes solver, including finite-rate chemistry and adaptive mesh refinement (AMR). A comparison between experimental and numerical results for S = 1.0 Dₕ shows reasonable agreement in flame tip velocity and reduced position, supporting the applicability of a two-dimensional DNS model like the one employed here. In contrast, for S = 1.5 Dₕ the numerical results fail to reproduce the experimentally observed flame structure and acceleration, likely due to missing three-dimensional effects. Numerical simulations for different S values ranging from 0.75 to 1.5 Dₕ reveal that obstacle spacing has a strong influence on flame acceleration mechanisms. As S increases indeed, the flame shifts from geometry-constrained jetting to instability-driven propagation involving vortex generation and pressure-wave interactions. The case with S = 1.25 Dₕ yields the highest flame tip velocity, even though the one with S = 1.5 Dₕ exhibits greater vorticity and pressure amplitudes. This is attributed to the reduced flame–vortex coupling coherence in the S = 1.5 Dₕ case, which results in more chaotic flame dynamics and lower flame acceleration efficiency. These results offer new insight into the mechanisms of flame acceleration under confinement and highlight obstacle spacing as a key design parameter for optimizing performance and safety in combustion systems.application/pdfengSpringerUSurn:issn:1386-6184info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Flow, Turbulence and Combustion; (2025)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPFlame accelerationObstacle separationMethane/air mixtureExperimentsNumerical modelingMetanolCombustibleshttps://purl.org/pe-repo/ocde/ford#1.03.00Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channelinfo:eu-repo/semantics/articleArtículoORIGINALs10494-025-00691-2.pdfTexto completoapplication/pdf4549440https://repositorio.pucp.edu.pe/bitstreams/02ca9571-325b-45df-bdd8-8046864a2871/download79bb02dcff958908de0ea35f0af9b740MD51trueAnonymousREADTEXTs10494-025-00691-2.pdf.txts10494-025-00691-2.pdf.txtExtracted texttext/plain74684https://repositorio.pucp.edu.pe/bitstreams/42f10bf4-802d-48a0-92b1-0aa51667ec2a/downloada2b8a5d0a47489d4e1ecb46d0b4dd6faMD52falseAnonymousREADTHUMBNAILs10494-025-00691-2.pdf.jpgs10494-025-00691-2.pdf.jpgGenerated Thumbnailimage/jpeg19223https://repositorio.pucp.edu.pe/bitstreams/9fce48f7-1d2a-43bc-b360-99e50f05d56e/downloadaefd0d97cb2b4f3e4191c46941e64e03MD53falseAnonymousREAD20.500.14657/205122oai:repositorio.pucp.edu.pe:20.500.14657/2051222025-11-18T17:00:50.038087Zhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
| score |
13.918182 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).