Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel

Descripción del Articulo

Flame acceleration plays an important role in determining the onset of deflagration-to-det­onation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separa­tion distance between obstacles...

Descripción completa

Detalles Bibliográficos
Autores: Valencia, Sebastian, Illacanchi, Fernando, Azevedo, Lucas De, Mendiburu, Andres Z., Bravo, Luis, Khare, Prashant, Celis, Cesar
Formato: artículo
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/205122
Enlace del recurso:http://hdl.handle.net/20.500.14657/205122
https://doi.org/10.1007/s10494-025-00691-2
Nivel de acceso:acceso abierto
Materia:Flame acceleration
Obstacle separation
Methane/air mixture
Experiments
Numerical modeling
Metanol
Combustibles
https://purl.org/pe-repo/ocde/ford#1.03.00
id RPUC_8a88f7bd5a8cd4e3a9c557f6e54b7cc8
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/205122
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.en_US.fl_str_mv Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
title Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
spellingShingle Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
Valencia, Sebastian
Flame acceleration
Obstacle separation
Methane/air mixture
Experiments
Numerical modeling
Metanol
Combustibles
https://purl.org/pe-repo/ocde/ford#1.03.00
title_short Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
title_full Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
title_fullStr Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
title_full_unstemmed Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
title_sort Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channel
author Valencia, Sebastian
author_facet Valencia, Sebastian
Illacanchi, Fernando
Azevedo, Lucas De
Mendiburu, Andres Z.
Bravo, Luis
Khare, Prashant
Celis, Cesar
author_role author
author2 Illacanchi, Fernando
Azevedo, Lucas De
Mendiburu, Andres Z.
Bravo, Luis
Khare, Prashant
Celis, Cesar
author2_role author
author
author
author
author
author
dc.contributor.affiliation.none.fl_str_mv Pontificia Universidad Católica del Perú. Departamento de Ingeniería
dc.contributor.author.fl_str_mv Valencia, Sebastian
Illacanchi, Fernando
Azevedo, Lucas De
Mendiburu, Andres Z.
Bravo, Luis
Khare, Prashant
Celis, Cesar
dc.subject.en_US.fl_str_mv Flame acceleration
Obstacle separation
Methane/air mixture
Experiments
Numerical modeling
topic Flame acceleration
Obstacle separation
Methane/air mixture
Experiments
Numerical modeling
Metanol
Combustibles
https://purl.org/pe-repo/ocde/ford#1.03.00
dc.subject.es_ES.fl_str_mv Metanol
Combustibles
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.00
description Flame acceleration plays an important role in determining the onset of deflagration-to-det­onation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separa­tion distance between obstacles (S) inside a 1050 mm closed duct on the acceleration of premixed flames fueled by a stoichiometric methane/air mixture at 40 kPa pressure. The studied duct geometry features a 96 mm x 96 mm square cross section and includes five obstacles along the wall with a 75% blockage ratio, each delineated by side dimensions of 96 mm x 96 mm and square holes of 48 mm x 48 mm. Experimental and direct numerical simulations (DNS) techniques are employed here to investigate the flame acceleration dy­namics under different operating conditions. More specifically, high-speed video captures the dynamics of the flame front evolution from experiments, while DNS are carried out using the PeleC fully compressive Navier Stokes solver, including finite-rate chemistry and adaptive mesh refinement (AMR). A comparison between experimental and numerical results for S = 1.0 Dₕ shows reasonable agreement in flame tip velocity and reduced posi­tion, supporting the applicability of a two-dimensional DNS model like the one employed here. In contrast, for S = 1.5 Dₕ the numerical results fail to reproduce the experimentally observed flame structure and acceleration, likely due to missing three-dimensional effects. Numerical simulations for different S values ranging from 0.75 to 1.5 Dₕ reveal that ob­stacle spacing has a strong influence on flame acceleration mechanisms. As S increases indeed, the flame shifts from geometry-constrained jetting to instability-driven propaga­tion involving vortex generation and pressure-wave interactions. The case with S = 1.25 Dₕ yields the highest flame tip velocity, even though the one with S = 1.5 Dₕ exhibits greater vorticity and pressure amplitudes. This is attributed to the reduced flame–vortex coupling coherence in the S = 1.5 Dₕ case, which results in more chaotic flame dynamics and lower flame acceleration efficiency. These results offer new insight into the mechanisms of flame acceleration under confinement and highlight obstacle spacing as a key design parameter for optimizing performance and safety in combustion systems.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-18T16:38:10Z
dc.date.issued.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14657/205122
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10494-025-00691-2
url http://hdl.handle.net/20.500.14657/205122
https://doi.org/10.1007/s10494-025-00691-2
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1386-6184
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Springer
dc.publisher.country.none.fl_str_mv US
dc.source.es_ES.fl_str_mv Flow, Turbulence and Combustion; (2025)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/02ca9571-325b-45df-bdd8-8046864a2871/download
https://repositorio.pucp.edu.pe/bitstreams/42f10bf4-802d-48a0-92b1-0aa51667ec2a/download
https://repositorio.pucp.edu.pe/bitstreams/9fce48f7-1d2a-43bc-b360-99e50f05d56e/download
bitstream.checksum.fl_str_mv 79bb02dcff958908de0ea35f0af9b740
a2b8a5d0a47489d4e1ecb46d0b4dd6fa
aefd0d97cb2b4f3e4191c46941e64e03
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1850224137783476224
spelling Valencia, SebastianIllacanchi, FernandoAzevedo, Lucas DeMendiburu, Andres Z.Bravo, LuisKhare, PrashantCelis, CesarPontificia Universidad Católica del Perú. Departamento de Ingeniería2025-11-18T16:38:10Z2025http://hdl.handle.net/20.500.14657/205122https://doi.org/10.1007/s10494-025-00691-2Flame acceleration plays an important role in determining the onset of deflagration-to-det­onation transition (DDT) phenomenon that is relevant to novel pressure-gain propulsion and explosion safety research. Accordingly, this work explores the influence of the separa­tion distance between obstacles (S) inside a 1050 mm closed duct on the acceleration of premixed flames fueled by a stoichiometric methane/air mixture at 40 kPa pressure. The studied duct geometry features a 96 mm x 96 mm square cross section and includes five obstacles along the wall with a 75% blockage ratio, each delineated by side dimensions of 96 mm x 96 mm and square holes of 48 mm x 48 mm. Experimental and direct numerical simulations (DNS) techniques are employed here to investigate the flame acceleration dy­namics under different operating conditions. More specifically, high-speed video captures the dynamics of the flame front evolution from experiments, while DNS are carried out using the PeleC fully compressive Navier Stokes solver, including finite-rate chemistry and adaptive mesh refinement (AMR). A comparison between experimental and numerical results for S = 1.0 Dₕ shows reasonable agreement in flame tip velocity and reduced posi­tion, supporting the applicability of a two-dimensional DNS model like the one employed here. In contrast, for S = 1.5 Dₕ the numerical results fail to reproduce the experimentally observed flame structure and acceleration, likely due to missing three-dimensional effects. Numerical simulations for different S values ranging from 0.75 to 1.5 Dₕ reveal that ob­stacle spacing has a strong influence on flame acceleration mechanisms. As S increases indeed, the flame shifts from geometry-constrained jetting to instability-driven propaga­tion involving vortex generation and pressure-wave interactions. The case with S = 1.25 Dₕ yields the highest flame tip velocity, even though the one with S = 1.5 Dₕ exhibits greater vorticity and pressure amplitudes. This is attributed to the reduced flame–vortex coupling coherence in the S = 1.5 Dₕ case, which results in more chaotic flame dynamics and lower flame acceleration efficiency. These results offer new insight into the mechanisms of flame acceleration under confinement and highlight obstacle spacing as a key design parameter for optimizing performance and safety in combustion systems.application/pdfengSpringerUSurn:issn:1386-6184info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Flow, Turbulence and Combustion; (2025)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPFlame accelerationObstacle separationMethane/air mixtureExperimentsNumerical modelingMetanolCombustibleshttps://purl.org/pe-repo/ocde/ford#1.03.00Influence of obstacle separation distance on the acceleration of premixed methane/air flames in a closed channelinfo:eu-repo/semantics/articleArtículoORIGINALs10494-025-00691-2.pdfTexto completoapplication/pdf4549440https://repositorio.pucp.edu.pe/bitstreams/02ca9571-325b-45df-bdd8-8046864a2871/download79bb02dcff958908de0ea35f0af9b740MD51trueAnonymousREADTEXTs10494-025-00691-2.pdf.txts10494-025-00691-2.pdf.txtExtracted texttext/plain74684https://repositorio.pucp.edu.pe/bitstreams/42f10bf4-802d-48a0-92b1-0aa51667ec2a/downloada2b8a5d0a47489d4e1ecb46d0b4dd6faMD52falseAnonymousREADTHUMBNAILs10494-025-00691-2.pdf.jpgs10494-025-00691-2.pdf.jpgGenerated Thumbnailimage/jpeg19223https://repositorio.pucp.edu.pe/bitstreams/9fce48f7-1d2a-43bc-b360-99e50f05d56e/downloadaefd0d97cb2b4f3e4191c46941e64e03MD53falseAnonymousREAD20.500.14657/205122oai:repositorio.pucp.edu.pe:20.500.14657/2051222025-11-18T17:00:50.038087Zhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.918182
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).