Aplicación de técnicas de Machine Learning e imágenes de radar para la detección temprana de invasiones en zonas de alto riesgo de desastres

Descripción del Articulo

La presente tesis aborda la problemática de las invasiones de terrenos por grupos vulnerables. En la mayoría de casos estos grupos se asientan en zonas de alto riesgo de desastres debido a fenómenos naturales. Lo expuesto previamente se evidenció en los procesos migratorios del siglo pasado y en inv...

Descripción completa

Detalles Bibliográficos
Autor: Jaimes Cucho, Javier Alonso
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/196258
Enlace del recurso:http://hdl.handle.net/20.500.12404/26510
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático (Inteligencia artificial)
Teledetección
Gestión de riesgos
https://purl.org/pe-repo/ocde/ford#2.01.01
Descripción
Sumario:La presente tesis aborda la problemática de las invasiones de terrenos por grupos vulnerables. En la mayoría de casos estos grupos se asientan en zonas de alto riesgo de desastres debido a fenómenos naturales. Lo expuesto previamente se evidenció en los procesos migratorios del siglo pasado y en invasiones más recientes donde grupos de personas vulnerables se asentaron en zonas costeras periféricas a las ciudades. Estas zonas según los distintos mapas elaborados por el SIGRID y CISMID tienen mayor probabilidad de ocurrencia de desastres. Por lo tanto, esta investigación tiene por finalidad identificar, de forma temprana y remota, la creciente tasa de asentamientos informales en zonas de alto riesgo de desastres. Para tal propósito se plantea una metodología que permita detectar estructuras y patrones de asentamientos informales. Para la detección de invasiones se emplean diversas técnicas de machine learning empleando imágenes satelitales de radar, de libre acceso, de media resolución (10m) y técnica de postprocesamiento para la mejora en el desempeño de la predicción. Para la evaluación de la metodología planteada se empleó como caso de estudio la invasión en Lomo de Corvina, ocurrido en abril del 2021. Para las áreas invadidas se obtuvo valores promedio de precision del 39%, lo cual es indicador que los algoritmos sobrestiman las áreas invadidas debido a las distorsiones complejas y ruido en las imágenes de radar, y recall del 85%, lo que indica que los algoritmos identifican correctamente un alto porcentaje del área invadida. Por lo tanto, se puede emplear esta metodología para la detección temprana de áreas invadidas con características similares a las estudiadas. Se lograrán mejores resultados si las invasiones son repentinas, de gran extensión y están ubicadas en zonas poco accidentadas y sin cubierta vegetal.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).