Deformaciones de estructuras complejas

Descripción del Articulo

Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordena...

Descripción completa

Detalles Bibliográficos
Autor: Villareal Montenegro, Yuliana
Formato: tesis de maestría
Fecha de Publicación:2013
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146398
Enlace del recurso:http://hdl.handle.net/20.500.12404/4801
Nivel de acceso:acceso abierto
Materia:Variedades holomórficas
Variedades de Riemann
Variedades (Matemáticas)
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
id RPUC_75d512c56effb9ea8be92e142549d42b
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146398
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Fernández Pilco, PercyVillareal Montenegro, Yuliana2013-10-04T20:16:03Z2013-10-04T20:16:03Z20132013-10-04http://hdl.handle.net/20.500.12404/4801Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Variedades holomórficasVariedades de RiemannVariedades (Matemáticas)Matemáticashttps://purl.org/pe-repo/ocde/ford#1.01.00Deformaciones de estructuras complejasinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas541137https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146398oai:repositorio.pucp.edu.pe:20.500.14657/1463982024-06-10 09:57:25.256http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Deformaciones de estructuras complejas
title Deformaciones de estructuras complejas
spellingShingle Deformaciones de estructuras complejas
Villareal Montenegro, Yuliana
Variedades holomórficas
Variedades de Riemann
Variedades (Matemáticas)
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Deformaciones de estructuras complejas
title_full Deformaciones de estructuras complejas
title_fullStr Deformaciones de estructuras complejas
title_full_unstemmed Deformaciones de estructuras complejas
title_sort Deformaciones de estructuras complejas
author Villareal Montenegro, Yuliana
author_facet Villareal Montenegro, Yuliana
author_role author
dc.contributor.advisor.fl_str_mv Fernández Pilco, Percy
dc.contributor.author.fl_str_mv Villareal Montenegro, Yuliana
dc.subject.es_ES.fl_str_mv Variedades holomórficas
Variedades de Riemann
Variedades (Matemáticas)
Matemáticas
topic Variedades holomórficas
Variedades de Riemann
Variedades (Matemáticas)
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes.
publishDate 2013
dc.date.accessioned.es_ES.fl_str_mv 2013-10-04T20:16:03Z
dc.date.available.es_ES.fl_str_mv 2013-10-04T20:16:03Z
dc.date.created.es_ES.fl_str_mv 2013
dc.date.issued.fl_str_mv 2013-10-04
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/4801
url http://hdl.handle.net/20.500.12404/4801
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639293196894208
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).