Obstrucción cohomológica para extensión de deformaciones de algebras asociativas
Descripción del Articulo
En el estudio de la teoría de deformaciones se observa que hay por lo menos tres tipos distintos, estos tipos aparecen en análisis, algebra y geometría algebraica. La teoría de deformaciones es una idea que proviene desde Riemann con el estudio de las deformaciones de estructuras complejas de varied...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2024 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/200440 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/28284 |
Nivel de acceso: | acceso abierto |
Materia: | Álgebras de Lie Anillos--Álgebra https://purl.org/pe-repo/ocde/ford#1.01.00 |
Sumario: | En el estudio de la teoría de deformaciones se observa que hay por lo menos tres tipos distintos, estos tipos aparecen en análisis, algebra y geometría algebraica. La teoría de deformaciones es una idea que proviene desde Riemann con el estudio de las deformaciones de estructuras complejas de variedades Riemannianas. Por otro lado, las deformaciones en el área de la geometría algebraica datan casi desde la aparición de esta área, ya que los objetos algebro-geométricos pueden ser “deformados” con una variación de los coeficientes de sus ecuaciones de definición. En el estudio de la teoría de deformaciones formales de algebras aparecen algunas preguntas que aún se encuentran abiertas. Es en el caso particular de algebras asociativas donde aparece un problema, no resuelto en general. Para explicar de que trata este problema debemos partir de la definición de deformación de un álgebra asociativa. Es a partir de la condición de asociatividad, donde se observa que el “infinitesimal” de una deformación es un cociclo de Hochschild. Se plantea entonces la pregunta “¿Dado un cociclo de Hochschild, resulta ser este cociclo el “infinitesimal” de una deformación?”. Desglosaremos el problema en una construcción recursiva de deformaciones truncadas. La obstrucción a extender una deformación truncada de grado n a una de grado n+1 es un cociclo de Hochschild. Este resultado que es uno de los resultados principales en la teoría de deformaciones, se probara en la Proposición 10. 2. Para ello empleamos la teoría de algebras graduadas y conceptos como anillos de Lie y pre-Lie graduados así como sistemas pre-Lie. En el desarrollo de este trabajo se mostrará, además del resultado, la manera de trabajar con distintos conceptos y como trabajar con operadores que aparecerán a lo largo del desarrollo. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).