Automatic regularization parameter selection for the total variation mixed noise image restoration framework

Descripción del Articulo

Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and uniqu...

Descripción completa

Detalles Bibliográficos
Autor: Rojas Gómez, Renán Alfredo
Formato: tesis de maestría
Fecha de Publicación:2012
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146515
Enlace del recurso:http://hdl.handle.net/20.500.12404/4461
Nivel de acceso:acceso abierto
Materia:Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.02.05
id RPUC_67a1acc2835122eabe8a97d7d054ba26
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146515
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Rodríguez Valderrama, Paúl AntonioRojas Gómez, Renán Alfredo2013-03-27T20:00:03Z2013-03-27T20:00:03Z20122013-03-27http://hdl.handle.net/20.500.12404/4461Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and unique solution. One of these methods is Total Variation, which has been broadly applied in signal processing tasks such as image denoising, image deconvolution, and image inpainting for multiple noise scenarios. Total Variation features a regularization parameter which defines the solution regularization impact, a crucial step towards its high quality level. Therefore, an optimal selection of the regularization parameter is required. Furthermore, while the classic Total Variation applies its constraint to the entire image, there are multiple scenarios in which this approach is not the most adequate. Defining different regularization levels to different image elements benefits such cases. In this work, an optimal regularization parameter selection framework for Total Variation image restoration is proposed. It covers two noise scenarios: Impulse noise and Impulse over Gaussian Additive noise. A broad study of the state of the art, which covers noise estimation algorithms, risk estimation methods, and Total Variation numerical solutions, is included. In order to approach the optimal parameter estimation problem, several adaptations are proposed in order to create a local-fashioned regularization which requires no a-priori information about the noise level. Quality and performance results, which include the work covered in two recently published articles, show the effectivity of the proposed regularization parameter selection and a great improvement over the global regularization framework, which attains a high quality reconstruction comparable with the state of the art algorithms.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Procesamiento de imágenes digitalesReconocimiento de imágenesAlgoritmoshttps://purl.org/pe-repo/ocde/ford#2.02.05Automatic regularization parameter selection for the total variation mixed noise image restoration frameworkinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Procesamiento de señales e imágenes digitalesMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de señales e imágenes digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146515oai:repositorio.pucp.edu.pe:20.500.14657/1465152024-06-10 09:39:34.239http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title Automatic regularization parameter selection for the total variation mixed noise image restoration framework
spellingShingle Automatic regularization parameter selection for the total variation mixed noise image restoration framework
Rojas Gómez, Renán Alfredo
Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_full Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_fullStr Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_full_unstemmed Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_sort Automatic regularization parameter selection for the total variation mixed noise image restoration framework
author Rojas Gómez, Renán Alfredo
author_facet Rojas Gómez, Renán Alfredo
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paúl Antonio
dc.contributor.author.fl_str_mv Rojas Gómez, Renán Alfredo
dc.subject.es_ES.fl_str_mv Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
topic Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and unique solution. One of these methods is Total Variation, which has been broadly applied in signal processing tasks such as image denoising, image deconvolution, and image inpainting for multiple noise scenarios. Total Variation features a regularization parameter which defines the solution regularization impact, a crucial step towards its high quality level. Therefore, an optimal selection of the regularization parameter is required. Furthermore, while the classic Total Variation applies its constraint to the entire image, there are multiple scenarios in which this approach is not the most adequate. Defining different regularization levels to different image elements benefits such cases. In this work, an optimal regularization parameter selection framework for Total Variation image restoration is proposed. It covers two noise scenarios: Impulse noise and Impulse over Gaussian Additive noise. A broad study of the state of the art, which covers noise estimation algorithms, risk estimation methods, and Total Variation numerical solutions, is included. In order to approach the optimal parameter estimation problem, several adaptations are proposed in order to create a local-fashioned regularization which requires no a-priori information about the noise level. Quality and performance results, which include the work covered in two recently published articles, show the effectivity of the proposed regularization parameter selection and a great improvement over the global regularization framework, which attains a high quality reconstruction comparable with the state of the art algorithms.
publishDate 2012
dc.date.created.es_ES.fl_str_mv 2012
dc.date.accessioned.es_ES.fl_str_mv 2013-03-27T20:00:03Z
dc.date.available.es_ES.fl_str_mv 2013-03-27T20:00:03Z
dc.date.issued.fl_str_mv 2013-03-27
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/4461
url http://hdl.handle.net/20.500.12404/4461
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639333145542656
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).