Scikit-neuromsi: a generalized framework for modeling multisensory integration

Descripción del Articulo

Multisensory integration is a fundamental neural mechanism crucial for understanding cognition. Multiple theoretical models exist to account for the computational processes underpinning this mechanism. However, there is an absence of a consolidated framework that facilitates the examination of multi...

Descripción completa

Detalles Bibliográficos
Autores: Paredes, Renato, Cabral, Juan B., Seriès, Peggy
Formato: artículo
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/205120
Enlace del recurso:http://hdl.handle.net/20.500.14657/205120
https://doi.org/10.1007/s12021-025-09738-1
Nivel de acceso:acceso abierto
Materia:Multisensory integration
Causal inference
Scientific software
Computational neuroscience
Computational models
Software para computadoras
Python (Lenguaje de programación para computadoras)
Neurociencia computacional
https://purl.org/pe-repo/ocde/ford#2.04.01
Descripción
Sumario:Multisensory integration is a fundamental neural mechanism crucial for understanding cognition. Multiple theoretical models exist to account for the computational processes underpinning this mechanism. However, there is an absence of a consolidated framework that facilitates the examination of multisensory integration across diverse experimental and computational contexts. We introduce Scikit-NeuroMSI, an accessible Python-based open-source framework designed to streamline the implementation and evaluation of computational models of multisensory integration. The capabilities of Scikit-NeuroMSI were demonstrated in enabling the implementation of multiple models of multisensory integration at different levels of analysis. Furthermore, we illustrate the utility of the software in systematically exploring the model’s behavior in spatiotemporal causal inference tasks through parameter sweeps in simulations. Particularly, we conducted a comparative analysis of Bayesian and network models of multisensory integration to identify commonalities that may enable to bridge both levels of description, addressing a key research question within the field. We discuss the significance of this approach in generating computationally informed hypotheses in multisensory research. Recommendations for the improvement of this software and directions for future research using this framework are presented.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).