Space craft reliable trajectory tracking and landing using model predictive control with chance constraints

Descripción del Articulo

This work considers the study of chance constrained Model Predictive Control (MPC) for reliable spacecraft trajectory tracking and landing. Objectives of the master thesis: • To identify and study mathematical dynamic models of a spacecraft. • To study the trajectory design and landing schemes for a...

Descripción completa

Detalles Bibliográficos
Autor: Tam Tapia, Augusto José
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146086
Enlace del recurso:http://hdl.handle.net/20.500.12404/8897
Nivel de acceso:acceso abierto
Materia:Modelos matemáticos
Vehículos espaciales
Navegación
https://purl.org/pe-repo/ocde/ford#2.00.00
id RPUC_5b4a5d3a25e877ee5b19f9e074eb9116
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146086
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
title Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
spellingShingle Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
Tam Tapia, Augusto José
Modelos matemáticos
Vehículos espaciales
Navegación
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
title_full Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
title_fullStr Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
title_full_unstemmed Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
title_sort Space craft reliable trajectory tracking and landing using model predictive control with chance constraints
author Tam Tapia, Augusto José
author_facet Tam Tapia, Augusto José
author_role author
dc.contributor.advisor.fl_str_mv Selassie, Abebe Geletu W.
dc.contributor.author.fl_str_mv Tam Tapia, Augusto José
dc.subject.es_ES.fl_str_mv Modelos matemáticos
Vehículos espaciales
Navegación
topic Modelos matemáticos
Vehículos espaciales
Navegación
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description This work considers the study of chance constrained Model Predictive Control (MPC) for reliable spacecraft trajectory tracking and landing. Objectives of the master thesis: • To identify and study mathematical dynamic models of a spacecraft. • To study the trajectory design and landing schemes for a given mission. • To study the source of uncertainty in the model parameters and external disturbances. • To study the chance constrained MPC scheme for the reliable and optimal trajectory tracking and landing. • To testing the new analytic approximation approaches, Inner and Outer, for chance constraints. • To study appropriate MPC algorithms and implement on case-studies. In the first part of the thesis considers deterministic dynamical models of spacecraft are discussed. The first example is about the tracking of trajectory and soft landing on the surface of an asteroid EROS433, this model uses Cartesian coordinates. In the second example, in a similar way to the first example, the trajectory and soft landing is performed on the surface of a celestial body. It is assumed that the celestial body is a perfect sphere, something that does not happen in the first example. Thus, the second example uses a Spherical coordinate system. The third example is about a Lander that enters the Martian atmosphere. This Lander follows a designed trajectory until reaching a certain altitude over the Martian surface. At this altitude the Lander deploys a parachute to make the landing. To solve the deterministic examples described above, the following sequence of steps are: • pose the deterministic Nonlinear Optimal Control Problem (NOCP), • convert the infinite Optimal Control Problem (OCP) to a finite Nonlinear Programming Problem (NLP), applying the Runge-Kutta 4th order discretization method, • apply the Quasi-sequential method to the deterministic NLP obtained from the previous step, • solution of the reduced NLP obtained from the previous step using IpOpt software. The steps outlined above are also part of the Nonlinear Model Predictive Control (NMPC) approach. In the second part of the thesis, the same examples of the first part are used but now with stochastic variables. To find the control law in each model, the stochastic NMPC was used. The above mentioned approach begins with a chance constrained OCP. The latter is discretized obtaining an NLP. The problem with this NLP, with chance constraints, is that is very difficult to solve in analytic form. So these chance constraints are approached by a different method that exist in the state of the art. This thesis work is focused on approaching the chance constraints through Analytic Approximation Strategies, specifically by the recent: Inner and Outer Approximation methods. The chance constrained MPC is expensive from a computational point of view, but it allows to find a control law for a more reliable trajectory-tracking and soft landing . That is suitable for applications with random disturbances, model inaccuracies, and measurement errors.
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-06-28T00:15:49Z
dc.date.available.es_ES.fl_str_mv 2017-06-28T00:15:49Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-06-28
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/8897
url http://hdl.handle.net/20.500.12404/8897
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638716376285184
spelling Selassie, Abebe Geletu W.Tam Tapia, Augusto José2017-06-28T00:15:49Z2017-06-28T00:15:49Z20172017-06-28http://hdl.handle.net/20.500.12404/8897This work considers the study of chance constrained Model Predictive Control (MPC) for reliable spacecraft trajectory tracking and landing. Objectives of the master thesis: • To identify and study mathematical dynamic models of a spacecraft. • To study the trajectory design and landing schemes for a given mission. • To study the source of uncertainty in the model parameters and external disturbances. • To study the chance constrained MPC scheme for the reliable and optimal trajectory tracking and landing. • To testing the new analytic approximation approaches, Inner and Outer, for chance constraints. • To study appropriate MPC algorithms and implement on case-studies. In the first part of the thesis considers deterministic dynamical models of spacecraft are discussed. The first example is about the tracking of trajectory and soft landing on the surface of an asteroid EROS433, this model uses Cartesian coordinates. In the second example, in a similar way to the first example, the trajectory and soft landing is performed on the surface of a celestial body. It is assumed that the celestial body is a perfect sphere, something that does not happen in the first example. Thus, the second example uses a Spherical coordinate system. The third example is about a Lander that enters the Martian atmosphere. This Lander follows a designed trajectory until reaching a certain altitude over the Martian surface. At this altitude the Lander deploys a parachute to make the landing. To solve the deterministic examples described above, the following sequence of steps are: • pose the deterministic Nonlinear Optimal Control Problem (NOCP), • convert the infinite Optimal Control Problem (OCP) to a finite Nonlinear Programming Problem (NLP), applying the Runge-Kutta 4th order discretization method, • apply the Quasi-sequential method to the deterministic NLP obtained from the previous step, • solution of the reduced NLP obtained from the previous step using IpOpt software. The steps outlined above are also part of the Nonlinear Model Predictive Control (NMPC) approach. In the second part of the thesis, the same examples of the first part are used but now with stochastic variables. To find the control law in each model, the stochastic NMPC was used. The above mentioned approach begins with a chance constrained OCP. The latter is discretized obtaining an NLP. The problem with this NLP, with chance constraints, is that is very difficult to solve in analytic form. So these chance constraints are approached by a different method that exist in the state of the art. This thesis work is focused on approaching the chance constraints through Analytic Approximation Strategies, specifically by the recent: Inner and Outer Approximation methods. The chance constrained MPC is expensive from a computational point of view, but it allows to find a control law for a more reliable trajectory-tracking and soft landing . That is suitable for applications with random disturbances, model inaccuracies, and measurement errors.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Modelos matemáticosVehículos espacialesNavegaciónhttps://purl.org/pe-repo/ocde/ford#2.00.00Space craft reliable trajectory tracking and landing using model predictive control with chance constraintsinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería MecatrónicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería Mecatrónica713167https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146086oai:repositorio.pucp.edu.pe:20.500.14657/1460862024-06-10 10:05:21.964http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.959468
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).