Aplicação do método de complementaridade não linear para o estudo de combustão de oxigênio in situ

Descripción del Articulo

Alguns problemas parabólicos podem ser reescritos na forma de problema de complementaridade e aparecem em muitas aplicações como em fluxos de líquidos no interior num domínio, difusão, fluxo de calor envolvendo mudança de fase e reações químicas. Estes tipos de problemas apresentam muitas dificuldad...

Descripción completa

Detalles Bibliográficos
Autor: Ramirez Gutierrez, Ángel Enrique
Formato: tesis de maestría
Fecha de Publicación:2013
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/111934
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/111934
Nivel de acceso:acceso abierto
Materia:Combustión
Difusión
Complementaridad
Diferencias finitas
Leyes de conservación
https://purl.org/pe-repo/ocde/ford#2.07.03
Descripción
Sumario:Alguns problemas parabólicos podem ser reescritos na forma de problema de complementaridade e aparecem em muitas aplicações como em fluxos de líquidos no interior num domínio, difusão, fluxo de calor envolvendo mudança de fase e reações químicas. Estes tipos de problemas apresentam muitas dificuldades analíticas e numéricas, normalmente devido à evolução no tempo ou fronteira móvel. Como a solução analítica é muito difícil de obter, é importante o estudo de métodos numéricos que permitam a busca de uma solução aproximada da solução exata para tais tipos de problemas. Estuda-se leis de conservação e os tipos de soluções associadas ao Problema de Riemann, essencialmente leis de balanço que expressam o fato de que alguma substância é conservada. O estudo desta teoría é importante porque frequentemente as leis de conservação aparecem quando nos problemas parabólicos são desprezados os termos difusivos de segunda ordem. Apresenta-se também um método numérico que é uma variação do método de Newton para resolver sistemas não lineares. O método é baseado num esquema de diferenças finitas implícito e um algoritmo de complementaridade não linear, FDA–NCP. O método dado tem a vantagem de fornecer uma convergência global em relação ao método de diferenças finitas com o método de Newton que só tem convergência local. A teoria é aplicada ao modelo de difusão de oxigênio num tecido e ao modelo de combustão de oxigênio in situ, os dois modelos são problemas parabólicos linear e não linear respectivamente e que podem ser reescritos na forma de problema de complementaridade. O primeiro modelo que pode ser aplicado no tratamento de células ancerígenas conduz a um problema de fronteira livre enquanto no segundo modelo, consideramos um processo unidimensional de injeção de ar dentro de um meio poroso que contém inicialmente combustível sólido e onde ocorre combustão gas–sólido, assim o modelo envolve a lei de balanço do calor, lei molar do combustível e a lei de gases ideais. Além disso, estuda-se a onda térmica e a onda de combustível associadas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).