Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners

Descripción del Articulo

This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretic...

Descripción completa

Detalles Bibliográficos
Autores: Alejo, Javier, Favata, Federico, Montes-Rojas, Gabriel, Trombetta, Martín
Formato: artículo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/186814
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/economia/article/view/24201/23459
https://doi.org/10.18800/economia.202102.004
Nivel de acceso:acceso abierto
Materia:Quantile regression
Unconditional quantile regression
Influence functions
https://purl.org/pe-repo/ocde/ford#5.02.01
id RPUC_50864fdc4ee76602e2791799d0ec4a90
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/186814
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Alejo, JavierFavata, FedericoMontes-Rojas, GabrielTrombetta, Martín2022-10-03T16:47:05Z2022-10-03T21:18:36Z2022-10-03T16:47:05Z2022-10-03T21:18:36Z2021-12-31https://revistas.pucp.edu.pe/index.php/economia/article/view/24201/23459https://doi.org/10.18800/economia.202102.004This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.application/pdfengPontificia Universidad Católica del PerúPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 44 Issue 88 (2021)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPQuantile regressionUnconditional quantile regressionInfluence functionshttps://purl.org/pe-repo/ocde/ford#5.02.01Conditional vs Unconditional Quantile Regression Models: A Guide to Practitionersinfo:eu-repo/semantics/articleArtículo20.500.14657/186814oai:repositorio.pucp.edu.pe:20.500.14657/1868142025-03-21 15:33:13.969http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.en_US.fl_str_mv Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
spellingShingle Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
Alejo, Javier
Quantile regression
Unconditional quantile regression
Influence functions
https://purl.org/pe-repo/ocde/ford#5.02.01
title_short Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_full Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_fullStr Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_full_unstemmed Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_sort Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
author Alejo, Javier
author_facet Alejo, Javier
Favata, Federico
Montes-Rojas, Gabriel
Trombetta, Martín
author_role author
author2 Favata, Federico
Montes-Rojas, Gabriel
Trombetta, Martín
author2_role author
author
author
dc.contributor.author.fl_str_mv Alejo, Javier
Favata, Federico
Montes-Rojas, Gabriel
Trombetta, Martín
dc.subject.en_US.fl_str_mv Quantile regression
Unconditional quantile regression
Influence functions
topic Quantile regression
Unconditional quantile regression
Influence functions
https://purl.org/pe-repo/ocde/ford#5.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.01
description This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-10-03T16:47:05Z
2022-10-03T21:18:36Z
dc.date.available.none.fl_str_mv 2022-10-03T16:47:05Z
2022-10-03T21:18:36Z
dc.date.issued.fl_str_mv 2021-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://revistas.pucp.edu.pe/index.php/economia/article/view/24201/23459
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18800/economia.202102.004
url https://revistas.pucp.edu.pe/index.php/economia/article/view/24201/23459
https://doi.org/10.18800/economia.202102.004
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2304-4306
urn:issn:0254-4415
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Economía; Volume 44 Issue 88 (2021)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638766138556416
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).