Modelo de regresión lineal usando una mixtura de distribuciones senh-normal

Descripción del Articulo

La distribución Senohiperbólico-Normal, denominada también como una variación de la distribución Birnbaum-Saunders, surgió inicialmente para estimar el deterioro en la calidad de los materiales sujetos a estrés. Asimismo, los modelos de mixtura han suscitado considerable interés en el campo de estad...

Descripción completa

Detalles Bibliográficos
Autor: Palomino Ore, Roussel Simpson
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/195768
Enlace del recurso:http://hdl.handle.net/20.500.12404/26046
Nivel de acceso:acceso abierto
Materia:Análisis de regresión
Teoría de las distribuciones (Análisis funcional)
Algoritmos
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:La distribución Senohiperbólico-Normal, denominada también como una variación de la distribución Birnbaum-Saunders, surgió inicialmente para estimar el deterioro en la calidad de los materiales sujetos a estrés. Asimismo, los modelos de mixtura han suscitado considerable interés en el campo de estadística debido a que permiten lidiar con situaciones en las que el comportamiento de los errores de un modelo con ajuste lineal se aleja significativamente de la normalidad. Esta tesis aborda los dos temas mencionados mediante la presentación de un modelo de ajuste lineal usando una mixtura de distribuciones Senohiperbólico Normal o Log-Birnbaum-Saunders. Esta propuesta es una familia versátil de distribuciones de probabilidad que posibilita representar datos que presentan multimodalidad además de provenir de poblaciones heterogéneas. Para conseguir los estimadores de máxima verosimilitud se emplea el algoritmo EM con maximización condicional. Asimismo, se llevan a cabo estudios de simulación y análisis de conjuntos de datos reales para demostrar la utilidad del método propuesto. Por último, se implementa la propuesta del algoritmo y los métodos en el software R.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).