La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets

Descripción del Articulo

The purpose of this paper is to evaluate popular academic theories believed to cause corruption through quantitative dataset proxies. In undertaking the exercise, the author examines various (and often competing) schools of thought on the topic, while showcasing the challenges that burden the object...

Descripción completa

Detalles Bibliográficos
Autor: Gazenov, Stefan
Formato: artículo
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/132971
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/132971
https://doi.org/10.18800/rcpg.201702.003
Nivel de acceso:acceso abierto
Materia:Corrupción
Teoría
Causas
Variables
Correlación
Análisis Cuantitativo
https://purl.org/pe-repo/ocde/ford#5.06.00
id RPUC_38e77d7c1a0ccac295b74dd5c4163463
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/132971
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
dc.title.alternative.en_US.fl_str_mv Corruption and its causes. A quantitative analysis of corruption using proxy datasets
title La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
spellingShingle La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
Gazenov, Stefan
Corrupción
Teoría
Causas
Variables
Correlación
Análisis Cuantitativo
https://purl.org/pe-repo/ocde/ford#5.06.00
title_short La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
title_full La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
title_fullStr La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
title_full_unstemmed La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
title_sort La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasets
author Gazenov, Stefan
author_facet Gazenov, Stefan
author_role author
dc.contributor.author.fl_str_mv Gazenov, Stefan
dc.subject.es_ES.fl_str_mv Corrupción
Teoría
Causas
Variables
Correlación
Análisis Cuantitativo
topic Corrupción
Teoría
Causas
Variables
Correlación
Análisis Cuantitativo
https://purl.org/pe-repo/ocde/ford#5.06.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.06.00
description The purpose of this paper is to evaluate popular academic theories believed to cause corruption through quantitative dataset proxies. In undertaking the exercise, the author examines various (and often competing) schools of thought on the topic, while showcasing the challenges that burden the objective study of corruption in a global context. The paper obtains a list of sixteen (16) variables extrapolated from academic literature; each (independent) variable is tied to a proxy dataset. The variables are first analysed through univariate statistics, before being subjected to bivariate correlation analysis against the (dependent) variable of corruption (itself tied to a proxy dataset, the Corruption Perception Index). The methodology employed in the analysis involves a standard mixture of statistical techniques—descriptive statistics  charts, logarithmic normalisation, Q-Q plotting, distribution curve overlays, etc.—as well as regression techniques aimed at the analysis of possible associations. The process uncovers data limitations for at least three variables (monitoring institutions, monotheistic religion, and campaign expenditure limits), while also revealing an unexpected (negative) relationship between corruption and national levels of debt. Several variables believed to impact corruption levels are confirmed, showing that rule of law, violence and instability, and national wealth all exert a strong impact on levels of corruption; other variables exhibit smaller-thanexpected associations (e.g. freedom of the press). The paper outlines future research avenues (multicollinearity analysis coupled with a robust stepwise regression model) that would generate valuable insights into global corruption trends that can then be scaled-down to accommodate local idiosyncrasies.
publishDate 2018
dc.date.issued.fl_str_mv 2018-05-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://repositorio.pucp.edu.pe/index/handle/123456789/132971
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18800/rcpg.201702.003
url https://repositorio.pucp.edu.pe/index/handle/123456789/132971
https://doi.org/10.18800/rcpg.201702.003
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:2313-304X
urn:issn:2411-6378
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Revista de Ciencia Política y Gobierno; Vol. 4, Núm. 8 (2017)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/b9ddb6cc-bc4a-41cb-b8be-f6e7af20d255/download
bitstream.checksum.fl_str_mv e0c0ea6551aba71d5f444fc539b9b19e
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639078002884608
spelling Gazenov, Stefan2018-05-31https://repositorio.pucp.edu.pe/index/handle/123456789/132971https://doi.org/10.18800/rcpg.201702.003The purpose of this paper is to evaluate popular academic theories believed to cause corruption through quantitative dataset proxies. In undertaking the exercise, the author examines various (and often competing) schools of thought on the topic, while showcasing the challenges that burden the objective study of corruption in a global context. The paper obtains a list of sixteen (16) variables extrapolated from academic literature; each (independent) variable is tied to a proxy dataset. The variables are first analysed through univariate statistics, before being subjected to bivariate correlation analysis against the (dependent) variable of corruption (itself tied to a proxy dataset, the Corruption Perception Index). The methodology employed in the analysis involves a standard mixture of statistical techniques—descriptive statistics  charts, logarithmic normalisation, Q-Q plotting, distribution curve overlays, etc.—as well as regression techniques aimed at the analysis of possible associations. The process uncovers data limitations for at least three variables (monitoring institutions, monotheistic religion, and campaign expenditure limits), while also revealing an unexpected (negative) relationship between corruption and national levels of debt. Several variables believed to impact corruption levels are confirmed, showing that rule of law, violence and instability, and national wealth all exert a strong impact on levels of corruption; other variables exhibit smaller-thanexpected associations (e.g. freedom of the press). The paper outlines future research avenues (multicollinearity analysis coupled with a robust stepwise regression model) that would generate valuable insights into global corruption trends that can then be scaled-down to accommodate local idiosyncrasies.The purpose of this paper is to evaluate popular academic theories believed to cause corruption through quantitative dataset proxies. In undertaking the exercise, the author examines various (and often competing) schools of thought on the topic, while showcasing the challenges that burden the objective study of corruption in a global context. The paper obtains a list of sixteen (16) variables extrapolated from academic literature; each (independent) variable is tied to a proxy dataset. The variables are first analysed through univariate statistics, before being subjected to bivariate correlation analysis against the (dependent) variable of corruption (itself tied to a proxy dataset, the Corruption Perception Index). The methodology employed in the analysis involves a standard mixture of statistical techniques—descriptive statistics  charts, logarithmic normalisation, Q-Q plotting, distribution curve overlays, etc.—as well as regression techniques aimed at the analysis of possible associations. The process uncovers data limitations for at least three variables (monitoring institutions, monotheistic religion, and campaign expenditure limits), while also revealing an unexpected (negative) relationship between corruption and national levels of debt. Several variables believed to impact corruption levels are confirmed, showing that rule of law, violence and instability, and national wealth all exert a strong impact on levels of corruption; other variables exhibit smaller-thanexpected associations (e.g. freedom of the press). The paper outlines future research avenues (multicollinearity analysis coupled with a robust stepwise regression model) that would generate valuable insights into global corruption trends that can then be scaled-down to accommodate local idiosyncrasies.application/pdfspaPontificia Universidad Católica del PerúPEurn:issn:2313-304Xurn:issn:2411-6378info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Revista de Ciencia Política y Gobierno; Vol. 4, Núm. 8 (2017)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPCorrupciónTeoríaCausasVariablesCorrelaciónAnálisis Cuantitativohttps://purl.org/pe-repo/ocde/ford#5.06.00La corrupción y sus causas. Análisis cuantitativo de la corrupción utilizando proxy datasetsCorruption and its causes. A quantitative analysis of corruption using proxy datasetsinfo:eu-repo/semantics/articleArtículoORIGINALTexto completo.pdfTexto completo.pdfapplication/pdf100913https://repositorio.pucp.edu.pe/bitstreams/b9ddb6cc-bc4a-41cb-b8be-f6e7af20d255/downloade0c0ea6551aba71d5f444fc539b9b19eMD51trueAnonymousREAD20.500.14657/132971oai:repositorio.pucp.edu.pe:20.500.14657/1329712024-09-19 13:12:04.86http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.785607
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).