Modelo lineal mixto de clases latentes con respuesta ordinal y su aplicación en la medición de la religiosidad

Descripción del Articulo

Los modelos lineales mixtos de clases latentes desarrollados por Proust-Lima, Philipps y Liquet (2017) son útiles para analizar el aspecto dinámico y la naturaleza multidimensional de un fenómeno de interés en poblaciones no necesariamente homogéneas. Estos permiten identificar las posibles clases l...

Descripción completa

Detalles Bibliográficos
Autor: Renteria Sacha, Ivonne Mireille
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/169573
Enlace del recurso:http://hdl.handle.net/20.500.12404/15591
Nivel de acceso:acceso abierto
Materia:Modelos lineales (Estadística)
Variables latentes
Religión--Juventud--Modelos estadísticos
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:Los modelos lineales mixtos de clases latentes desarrollados por Proust-Lima, Philipps y Liquet (2017) son útiles para analizar el aspecto dinámico y la naturaleza multidimensional de un fenómeno de interés en poblaciones no necesariamente homogéneas. Estos permiten identificar las posibles clases latentes en la población bajo estudio y cómo un conjunto de covariables afecta en cada clase a la variable respuesta de interés. En esta tesis se desarrolla el modelo lineal mixto de clases latentes con variable respuesta latente y variable mani-fiesta ordinal, a través de sus dos componentes: el sub-modelo estructural y el sub-modelo de medición, que son complementados con un modelo logístico multinomial para analizar la probabilidad de pertenencia a una clase latente. El modelo se aplicó a un conjunto de datos pertenecientes al Estudio Nacional de Juventud y Religión (NSYR por las siglas en inglés “National Study of Youth and Religion”), con el fin de encontrar clases latentes en el constructo religiosidad y describir su evolución. Como resultado, se identificaron tres clases latentes con trayectorias distintas para cada caso.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).