Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach

Descripción del Articulo

This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is d...

Descripción completa

Detalles Bibliográficos
Autores: Abanto-Valle, Carlos A., Garrafa-Aragón, Hernán B.
Formato: artículo
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/167724
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850
https://doi.org/10.18800/economia.201901.002
Nivel de acceso:acceso abierto
Materia:MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
Modelos de volatilidad
https://purl.org/pe-repo/ocde/ford#5.02.01
id RPUC_2f7b41bf81e3bccff0a0a8048c0e0331
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/167724
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Abanto-Valle, Carlos A.Garrafa-Aragón, Hernán B.2019-09-16http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850https://doi.org/10.18800/economia.201901.002This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.application/pdfengPontificia Universidad Católica del Perú. Fondo EditorialPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 42 Issue 83 (2019)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMMarkov chain Monte CarloNon linear state space modelsScale mixtures of normal distributionsStochastic volatilityThresholdValue-at-RiskExpected shortfallModelos de volatilidadhttps://purl.org/pe-repo/ocde/ford#5.02.01Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approachinfo:eu-repo/semantics/articleArtículo20.500.14657/167724oai:repositorio.pucp.edu.pe:20.500.14657/1677242025-06-11 11:55:43.95http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
spellingShingle Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
Abanto-Valle, Carlos A.
MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
Modelos de volatilidad
https://purl.org/pe-repo/ocde/ford#5.02.01
title_short Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_full Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_fullStr Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_full_unstemmed Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_sort Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
author Abanto-Valle, Carlos A.
author_facet Abanto-Valle, Carlos A.
Garrafa-Aragón, Hernán B.
author_role author
author2 Garrafa-Aragón, Hernán B.
author2_role author
dc.contributor.author.fl_str_mv Abanto-Valle, Carlos A.
Garrafa-Aragón, Hernán B.
dc.subject.en_US.fl_str_mv MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
topic MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
Modelos de volatilidad
https://purl.org/pe-repo/ocde/ford#5.02.01
dc.subject.es_ES.fl_str_mv Modelos de volatilidad
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.01
description This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.
publishDate 2019
dc.date.issued.fl_str_mv 2019-09-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18800/economia.201901.002
url http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850
https://doi.org/10.18800/economia.201901.002
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2304-4306
urn:issn:0254-4415
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú. Fondo Editorial
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Economía; Volume 42 Issue 83 (2019)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1836272205490552832
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).