Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
Descripción del Articulo
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is d...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/167724 |
Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850 https://doi.org/10.18800/economia.201901.002 |
Nivel de acceso: | acceso abierto |
Materia: | MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall Modelos de volatilidad https://purl.org/pe-repo/ocde/ford#5.02.01 |
id |
RPUC_2f7b41bf81e3bccff0a0a8048c0e0331 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/167724 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Abanto-Valle, Carlos A.Garrafa-Aragón, Hernán B.2019-09-16http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850https://doi.org/10.18800/economia.201901.002This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.application/pdfengPontificia Universidad Católica del Perú. Fondo EditorialPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 42 Issue 83 (2019)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMMarkov chain Monte CarloNon linear state space modelsScale mixtures of normal distributionsStochastic volatilityThresholdValue-at-RiskExpected shortfallModelos de volatilidadhttps://purl.org/pe-repo/ocde/ford#5.02.01Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approachinfo:eu-repo/semantics/articleArtículo20.500.14657/167724oai:repositorio.pucp.edu.pe:20.500.14657/1677242025-06-11 11:55:43.95http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
spellingShingle |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach Abanto-Valle, Carlos A. MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall Modelos de volatilidad https://purl.org/pe-repo/ocde/ford#5.02.01 |
title_short |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_full |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_fullStr |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_full_unstemmed |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_sort |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
author |
Abanto-Valle, Carlos A. |
author_facet |
Abanto-Valle, Carlos A. Garrafa-Aragón, Hernán B. |
author_role |
author |
author2 |
Garrafa-Aragón, Hernán B. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Abanto-Valle, Carlos A. Garrafa-Aragón, Hernán B. |
dc.subject.en_US.fl_str_mv |
MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
topic |
MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall Modelos de volatilidad https://purl.org/pe-repo/ocde/ford#5.02.01 |
dc.subject.es_ES.fl_str_mv |
Modelos de volatilidad |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.01 |
description |
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-09-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
dc.identifier.uri.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18800/economia.201901.002 |
url |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850 https://doi.org/10.18800/economia.201901.002 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2304-4306 urn:issn:0254-4415 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú. Fondo Editorial |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_ES.fl_str_mv |
Economía; Volume 42 Issue 83 (2019) |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1836272205490552832 |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).