Minimal possible counterexamples to the two-dimensional Jacobian Conjecture

Descripción del Articulo

Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It...

Descripción completa

Detalles Bibliográficos
Autor: Horruitiner Mendoza, Rodrigo Manuel
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146444
Enlace del recurso:http://hdl.handle.net/20.500.12404/14385
Nivel de acceso:acceso abierto
Materia:Polinomios
Geometría algebraica
Automorfismo
https://purl.org/pe-repo/ocde/ford#1.01.00
id RPUC_2a2f72b1759928403125131f8be37590
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146444
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Valqui Hasse, Christian HolgerHorruitiner Mendoza, Rodrigo Manuel2019-06-13T02:22:02Z2019-06-13T02:22:02Z20182019-06-12http://hdl.handle.net/20.500.12404/14385Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.Sea K un cuerpo algebraicamente cerrado de característica zero. La Conjetura del Jacobiano en dimensión dos postulada por Keller en [8] dice que cualquier par de polinomios P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (un par Jacobiano) define un automofismo de L via x-> P and y -> Q. Resulta que los polígonos de Newton de tal par de polinomios están relacionados íntimamente, y al analizarlos, mucha información puede ser obtenida sobre condiciones que un par Jacobiano debe satisfacer. Específicamente, si existe un par Jacobiano que no define un automorfismo (un contraejemplo) entonces sus polígonos de Newton deben satisfacer condiciones geométricas bastante restrictivas. Basado en gran parte en el trabajo en [1], presentamos un algoritmo para dar una descripción geométrica precisa de posibles contraejemplos. Esto significa que, asumiendo que (P;Q) es un contraejemplo a la Conjetura del Jacobiano con gcd(deg(P); deg(Q)) = k, podemos generar las posibles formas del Polígono de Newton de P y Q y cómo se transforman bajo ciertos automorfismos lineales. Al analizar los posibles contraejemplos minimales, esbozamos un camino para incrementar la cota inferior de max(deg(P); deg(Q)) a 125 para un posible contraejemplo minimal a la Conjetura del Jacobiano.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/pe/PolinomiosGeometría algebraicaAutomorfismohttps://purl.org/pe-repo/ocde/ford#1.01.00Minimal possible counterexamples to the two-dimensional Jacobian Conjectureinfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas09381458541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis20.500.14657/146444oai:repositorio.pucp.edu.pe:20.500.14657/1464442025-03-11 11:15:50.576http://creativecommons.org/licenses/by-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
spellingShingle Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
Horruitiner Mendoza, Rodrigo Manuel
Polinomios
Geometría algebraica
Automorfismo
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_full Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_fullStr Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_full_unstemmed Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_sort Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
author Horruitiner Mendoza, Rodrigo Manuel
author_facet Horruitiner Mendoza, Rodrigo Manuel
author_role author
dc.contributor.advisor.fl_str_mv Valqui Hasse, Christian Holger
dc.contributor.author.fl_str_mv Horruitiner Mendoza, Rodrigo Manuel
dc.subject.es_ES.fl_str_mv Polinomios
Geometría algebraica
Automorfismo
topic Polinomios
Geometría algebraica
Automorfismo
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.
publishDate 2018
dc.date.created.es_ES.fl_str_mv 2018
dc.date.accessioned.es_ES.fl_str_mv 2019-06-13T02:22:02Z
dc.date.available.es_ES.fl_str_mv 2019-06-13T02:22:02Z
dc.date.issued.fl_str_mv 2019-06-12
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/14385
url http://hdl.handle.net/20.500.12404/14385
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638279694712832
score 13.888934
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).