Análisis predictivo de series temporales de temperatura corporal

Descripción del Articulo

Como un ser homeopático el ser humano presenta mecanismos de regulación de la temperatura que aseguran un óptimo funcionamiento del sistema fisiológico. Estos mecanismos de regulación tienen su centro de control e integración en el hipotálamo, que se encarga de mantener la temperatura corporal funci...

Descripción completa

Detalles Bibliográficos
Autor: Cotrina Araujo, Nikol Alexandra
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/173215
Enlace del recurso:http://hdl.handle.net/20.500.12404/17511
Nivel de acceso:acceso abierto
Materia:Ingeniería biomédica--Aparatos e instrumentos
Temperatura--Medición
Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.11.04
id RPUC_28c6a3bd194fe10f2256e2e8ce74bc87
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/173215
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Análisis predictivo de series temporales de temperatura corporal
title Análisis predictivo de series temporales de temperatura corporal
spellingShingle Análisis predictivo de series temporales de temperatura corporal
Cotrina Araujo, Nikol Alexandra
Ingeniería biomédica--Aparatos e instrumentos
Temperatura--Medición
Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Análisis predictivo de series temporales de temperatura corporal
title_full Análisis predictivo de series temporales de temperatura corporal
title_fullStr Análisis predictivo de series temporales de temperatura corporal
title_full_unstemmed Análisis predictivo de series temporales de temperatura corporal
title_sort Análisis predictivo de series temporales de temperatura corporal
author Cotrina Araujo, Nikol Alexandra
author_facet Cotrina Araujo, Nikol Alexandra
author_role author
dc.contributor.advisor.fl_str_mv Rau Álvarez, José Alan
dc.contributor.author.fl_str_mv Cotrina Araujo, Nikol Alexandra
dc.subject.es_ES.fl_str_mv Ingeniería biomédica--Aparatos e instrumentos
Temperatura--Medición
Redes neuronales
topic Ingeniería biomédica--Aparatos e instrumentos
Temperatura--Medición
Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description Como un ser homeopático el ser humano presenta mecanismos de regulación de la temperatura que aseguran un óptimo funcionamiento del sistema fisiológico. Estos mecanismos de regulación tienen su centro de control e integración en el hipotálamo, que se encarga de mantener la temperatura corporal funcionando a ±1°C de la temperatura en reposo. Cuando la temperatura se encuentra fuera de este rango los sistemas biológicos comienzan a verse afectados. A efectos prácticos, el organismo puede dividirse en una parte central o nuclear, el cual estaría constituido por la cabeza y las cavidades torácica y abdominal; y una parte superficial, que está constituido por la piel, el tejido celular subcutáneo y el grueso de la masa muscular. De manera que, las temperaturas del núcleo y la piel serían las temperaturas central y periférica, respectivamente. La temperatura central (representada por las temperaturas oral, rectal, esofágica, membrana del tímpano, hipotalámica o de la sangre al pasar por cualquiera de los órganos de la parte central o nuclear) permanece relativamente constante, gracias a que es regulada y se mantiene dentro de límites bastante estrechos. Además, dentro de la práctica clínica, la temperatura es una de las variables que se encuentran en constante monitoreo pues resulta fundamental en la atención de pacientes con patologías agudas, ya que permite determinar si el paciente presenta un aumento en su temperatura central o fiebre que usualmente es asociado con el desarrollo de una infección. La fiebre es una respuesta fisiológica adaptativa frente a un agente patógeno, que mejora la respuesta del sistema inmune y evita la propagación de los agentes infecciosos. De hecho, “la elevación de la temperatura corporal en algunos grados puede aumentar la eficiencia de los macrófagos para destruir los microorganismos invasores, dificultando la replicación de diferentes microorganismos y otorgando una ventaja adaptativa al sistema inmune” (Gómez, 2008). Debido a lo anterior, la predicción del desarrollo de fiebre es importante pues, según el horizonte de predicción de este estado en el paciente, se puede permitir la obtención de un cultivo de sangre cuando el recuento de bacterias está en su punto máximo y, de esa manera, precisar el diagnóstico del paciente. Durante la práctica clínica, se registra la temperatura de los pacientes cada 8-12 h, sin embargo, tales mediciones no proporcionan información significativa en el diagnóstico de enfermedades. Por ello, el monitoreo continuo de la temperatura y el análisis de los registros obtenidos utilizando métodos analíticos podrían ayudar a revelar respuestas únicas de fiebre de los pacientes y en diferentes condiciones clínicas. Esta tesis analiza series de temperatura central de pacientes aplicando técnicas estadísticas de series temporales como modelos lineales ARIMA y modelos no lineales de redes neuronales recurrentes para predecir futuros incrementos de la temperatura central que permitiría anticipar el diagnóstico y tratamiento que podría recibir un paciente. Los modelos ARIMA y de Redes neuronales recurrentes fueron caracterizados con un análisis univariante, donde la variable estudiada es la Temperatura central. Por otro lado, los datos utilizados fueron recogidos con un equipo de Monitorización Continua de Temperatura, con un termómetro timpánico de infrarrojos denominado Thercom. Estos dispositivos se configuraron para realizar una determinación de temperatura central por minuto durante aproximadamente 24 horas. No obstante, debido a que la toma de datos de temperatura podría ser incómoda para los pacientes, hay momentos en las series en que los datos obtenidos contienen mediciones que podrían no ser fiables. La primera técnica empleada para el análisis de series temporales fue el modelo de Box-Jenkins o también llamados procesos autorregresivos integrados con media móvil (modelos ARIMA, por sus siglas en inglés) estos modelos pueden capturar las tendencias a corto plazo y las variaciones periódicas en las series temporales, sin embargo, estos no se ajustan a tendencias no lineales que pudiera tener la variable evaluada. Posteriormente, se probaron los modelos no lineales de redes neuronales recurrentes de Elman y se comparó la precisión de las predicciones de los modelos ARIMA, frente a los modelos de Elman usando como estadístico el error absoluto porcentual medio o MAPE para horizontes de 15, 30 y 60 minutos. Ambos modelos fueron desarrollados usando el software estadístico Rstudio con las librerías: “tseries”, para modelos ARIMA; “forecast”, para determinar las predicciones en modelos ARIMA y “RSNNS”, para modelar redes neuronales. Debido a la naturaleza de la variable temperatura central la precisión de los modelos debe ser tal que el error de predicción del modelo no debe ser mayor a 1°C, esto en promedio, implica que las predicciones del modelo deben tener un MAPE máximo admisible de 2.7%. Las predicciones de los modelos ARIMA para los 3 pacientes produjeron MAPEs menores a 3% en todos los horizontes de predicción, no obstante, los residuos obtenidos no siguen una distribución normal, aunque en todos los casos cumplían la hipótesis fundamental de que eran independientes. Además, se produjeron predicciones muy satisfactorias para los 3 pacientes en el horizonte de 15 minutos. Para los otros horizontes de tiempo, los modelos presentaban un intervalo de confianza con amplitud mayor a 2°C, aunque el MAPE producido seguía siendo aceptable. Para los modelos de redes neuronales se utilizaron como variables de entrada, el primer y el segundo retardo de la temperatura central. Como resultado, las predicciones de los modelos de redes de Elman se ajustaron a los datos de tal manera que se obtuvieron MAPEs inferiores a 0.5% para los 3 pacientes en los 3 horizontes de tiempo estudiados (15, 30 y 60 minutos). A pesar de la complejidad de la regulación fisiológica de la temperatura central, el usar retardos de la temperatura central como valores de entrada para el modelo de redes neuronales hace que la estructura del modelo se simplifique y que la predicción de los futuros valores pueda estimarse con modelos de una sola capa de manera satisfactoria, ajustándose a los datos en su escala real y produciendo errores mínimos.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-17T17:32:50Z
dc.date.available.none.fl_str_mv 2020-11-17T17:32:50Z
dc.date.created.none.fl_str_mv 2020
dc.date.EmbargoEnd.none.fl_str_mv 2021-01-02
dc.date.issued.fl_str_mv 2020-11-17
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis de licenciatura
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/17511
url http://hdl.handle.net/20.500.12404/17511
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639776357646336
spelling Rau Álvarez, José AlanCotrina Araujo, Nikol Alexandra2020-11-17T17:32:50Z2020-11-17T17:32:50Z20202020-11-172021-01-02http://hdl.handle.net/20.500.12404/17511Como un ser homeopático el ser humano presenta mecanismos de regulación de la temperatura que aseguran un óptimo funcionamiento del sistema fisiológico. Estos mecanismos de regulación tienen su centro de control e integración en el hipotálamo, que se encarga de mantener la temperatura corporal funcionando a ±1°C de la temperatura en reposo. Cuando la temperatura se encuentra fuera de este rango los sistemas biológicos comienzan a verse afectados. A efectos prácticos, el organismo puede dividirse en una parte central o nuclear, el cual estaría constituido por la cabeza y las cavidades torácica y abdominal; y una parte superficial, que está constituido por la piel, el tejido celular subcutáneo y el grueso de la masa muscular. De manera que, las temperaturas del núcleo y la piel serían las temperaturas central y periférica, respectivamente. La temperatura central (representada por las temperaturas oral, rectal, esofágica, membrana del tímpano, hipotalámica o de la sangre al pasar por cualquiera de los órganos de la parte central o nuclear) permanece relativamente constante, gracias a que es regulada y se mantiene dentro de límites bastante estrechos. Además, dentro de la práctica clínica, la temperatura es una de las variables que se encuentran en constante monitoreo pues resulta fundamental en la atención de pacientes con patologías agudas, ya que permite determinar si el paciente presenta un aumento en su temperatura central o fiebre que usualmente es asociado con el desarrollo de una infección. La fiebre es una respuesta fisiológica adaptativa frente a un agente patógeno, que mejora la respuesta del sistema inmune y evita la propagación de los agentes infecciosos. De hecho, “la elevación de la temperatura corporal en algunos grados puede aumentar la eficiencia de los macrófagos para destruir los microorganismos invasores, dificultando la replicación de diferentes microorganismos y otorgando una ventaja adaptativa al sistema inmune” (Gómez, 2008). Debido a lo anterior, la predicción del desarrollo de fiebre es importante pues, según el horizonte de predicción de este estado en el paciente, se puede permitir la obtención de un cultivo de sangre cuando el recuento de bacterias está en su punto máximo y, de esa manera, precisar el diagnóstico del paciente. Durante la práctica clínica, se registra la temperatura de los pacientes cada 8-12 h, sin embargo, tales mediciones no proporcionan información significativa en el diagnóstico de enfermedades. Por ello, el monitoreo continuo de la temperatura y el análisis de los registros obtenidos utilizando métodos analíticos podrían ayudar a revelar respuestas únicas de fiebre de los pacientes y en diferentes condiciones clínicas. Esta tesis analiza series de temperatura central de pacientes aplicando técnicas estadísticas de series temporales como modelos lineales ARIMA y modelos no lineales de redes neuronales recurrentes para predecir futuros incrementos de la temperatura central que permitiría anticipar el diagnóstico y tratamiento que podría recibir un paciente. Los modelos ARIMA y de Redes neuronales recurrentes fueron caracterizados con un análisis univariante, donde la variable estudiada es la Temperatura central. Por otro lado, los datos utilizados fueron recogidos con un equipo de Monitorización Continua de Temperatura, con un termómetro timpánico de infrarrojos denominado Thercom. Estos dispositivos se configuraron para realizar una determinación de temperatura central por minuto durante aproximadamente 24 horas. No obstante, debido a que la toma de datos de temperatura podría ser incómoda para los pacientes, hay momentos en las series en que los datos obtenidos contienen mediciones que podrían no ser fiables. La primera técnica empleada para el análisis de series temporales fue el modelo de Box-Jenkins o también llamados procesos autorregresivos integrados con media móvil (modelos ARIMA, por sus siglas en inglés) estos modelos pueden capturar las tendencias a corto plazo y las variaciones periódicas en las series temporales, sin embargo, estos no se ajustan a tendencias no lineales que pudiera tener la variable evaluada. Posteriormente, se probaron los modelos no lineales de redes neuronales recurrentes de Elman y se comparó la precisión de las predicciones de los modelos ARIMA, frente a los modelos de Elman usando como estadístico el error absoluto porcentual medio o MAPE para horizontes de 15, 30 y 60 minutos. Ambos modelos fueron desarrollados usando el software estadístico Rstudio con las librerías: “tseries”, para modelos ARIMA; “forecast”, para determinar las predicciones en modelos ARIMA y “RSNNS”, para modelar redes neuronales. Debido a la naturaleza de la variable temperatura central la precisión de los modelos debe ser tal que el error de predicción del modelo no debe ser mayor a 1°C, esto en promedio, implica que las predicciones del modelo deben tener un MAPE máximo admisible de 2.7%. Las predicciones de los modelos ARIMA para los 3 pacientes produjeron MAPEs menores a 3% en todos los horizontes de predicción, no obstante, los residuos obtenidos no siguen una distribución normal, aunque en todos los casos cumplían la hipótesis fundamental de que eran independientes. Además, se produjeron predicciones muy satisfactorias para los 3 pacientes en el horizonte de 15 minutos. Para los otros horizontes de tiempo, los modelos presentaban un intervalo de confianza con amplitud mayor a 2°C, aunque el MAPE producido seguía siendo aceptable. Para los modelos de redes neuronales se utilizaron como variables de entrada, el primer y el segundo retardo de la temperatura central. Como resultado, las predicciones de los modelos de redes de Elman se ajustaron a los datos de tal manera que se obtuvieron MAPEs inferiores a 0.5% para los 3 pacientes en los 3 horizontes de tiempo estudiados (15, 30 y 60 minutos). A pesar de la complejidad de la regulación fisiológica de la temperatura central, el usar retardos de la temperatura central como valores de entrada para el modelo de redes neuronales hace que la estructura del modelo se simplifique y que la predicción de los futuros valores pueda estimarse con modelos de una sola capa de manera satisfactoria, ajustándose a los datos en su escala real y produciendo errores mínimos.spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Ingeniería biomédica--Aparatos e instrumentosTemperatura--MediciónRedes neuronaleshttps://purl.org/pe-repo/ocde/ford#2.11.04Análisis predictivo de series temporales de temperatura corporalinfo:eu-repo/semantics/bachelorThesisTesis de licenciaturareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPIngeniero IndustrialTítulo ProfesionalPontificia Universidad Católica del Perú. Facultad de Ciencias e IngenieríaIngeniería Industrial07602255https://orcid.org/0000-0003-0928-3994722026https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesis20.500.14657/173215oai:repositorio.pucp.edu.pe:20.500.14657/1732152024-07-08 09:15:23.433http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.887768
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).