Probabilidad de default de portafolios de deuda corporativa en economías emergentes
Descripción del Articulo
En los últimos años, se ha producido una intensa producción de investigación académica con respecto a los modelos que estiman o predicen los eventos de incumplimiento de pago, debido al mayor interés de las empresas por mantener una mejor gestión de riesgo de crédito. Por ello, el presente trabajo t...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/198793 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/26774 |
Nivel de acceso: | acceso abierto |
Materia: | Incumplimiento (Finanzas)--Perú Pronóstico de la economía--Perú Riesgo financiero--Perú Empresas--Finanzas--Perú https://purl.org/pe-repo/ocde/ford#5.02.01 |
Sumario: | En los últimos años, se ha producido una intensa producción de investigación académica con respecto a los modelos que estiman o predicen los eventos de incumplimiento de pago, debido al mayor interés de las empresas por mantener una mejor gestión de riesgo de crédito. Por ello, el presente trabajo tiene como principal objetivo comparar la capacidad predictiva de los modelos tradicionales o estadísticos (Regresión Logística) contra modelos Machine Learning (XGBoost y Random Forest). Para lo cual, se emplea una muestra de compañías latinoamericanas que emitieron bonos corporativos durante el período de 1990 a 2022, analizando así un total de 389 empresas. Asimismo, se usó Bloomberg, como fuente de información para extraer los ratios financieros con frecuencia trimestral en el periodo ya mencionado, obteniendo así 51,060 observaciones. Una de las características de este trabajo es que se usaron las variables del modelo de puntaje Z de Altman junto con otros ratios financieros complementarios, para así mejorar la precisión de los modelos. Sin embargo, para la determinación del mejor modelo predictivo, se usaron las métricas de clasificación como el AUC (Área bajo la curva ROC), Precisión, Recall y Score F1, y los resultados mostraron que los modelos de Machine Learning tuvieron un mejor rendimiento de clasificación con respecto a la Regresión logística, siendo el modelo Random Forest el que mejor performance según las métricas de evaluación. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).