Indicadores líderes, redes neuronales y predicción de corto plazo

Descripción del Articulo

This paper presents a procedure for constructing a short-term predictor of the level of economic activity. To do so, the Baxter-King filter is used to decompose the monthly GDP series into its three components: seasonal, cyclical, and trend. The cyclical component is then estimated and forecasted us...

Descripción completa

Detalles Bibliográficos
Autores: Kapsoli Salinas, Javier, Bencich Aguilar, Brigitt
Formato: artículo
Fecha de Publicación:2004
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/118091
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/867/828
https://doi.org/10.18800/economia.200401.006
Nivel de acceso:acceso abierto
Materia:Economía
https://purl.org/pe-repo/ocde/ford#5.02.01
Descripción
Sumario:This paper presents a procedure for constructing a short-term predictor of the level of economic activity. To do so, the Baxter-King filter is used to decompose the monthly GDP series into its three components: seasonal, cyclical, and trend. The cyclical component is then estimated and forecasted using a set of leading variables that lead GDP. It is proposed that the relationships between these variables and the GDP cycle are determined through a nonlinear neural network model. The remaining components are estimated using standard econometric models. Finally, the three components are aggregated to obtain an indicator of future GDP developments. The resulting prediction demonstrates a reasonable level of reliability, making the proposed index a useful tool for decision-making given its ready availability relative to official statistics.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).