Modeling and track planning for the automation of BMW model car

Descripción del Articulo

In recent years, autonomous driving technologies have become a topic of growing interest due to the promise of safer and more convenient mode of transportation. An essential element in every autonomous driving system is the control algorithm. Classical control schemes, like PID, are not able to mana...

Descripción completa

Detalles Bibliográficos
Autor: Tabuchi Fukuhara, Rubén Toshiharu
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146050
Enlace del recurso:http://hdl.handle.net/20.500.12404/8901
Nivel de acceso:acceso abierto
Materia:Control automático
Conducción de automóviles
Controladores programables
Sistemas no lineales
https://purl.org/pe-repo/ocde/ford#2.00.00
id RPUC_21f5245939d7f03811b52d676165f5fe
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146050
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Lin, Shih-JanTafur, JulioTabuchi Fukuhara, Rubén Toshiharu2017-06-28T03:50:40Z2017-06-28T03:50:40Z20172017-06-28http://hdl.handle.net/20.500.12404/8901In recent years, autonomous driving technologies have become a topic of growing interest due to the promise of safer and more convenient mode of transportation. An essential element in every autonomous driving system is the control algorithm. Classical control schemes, like PID, are not able to manage Multiple Inputs-Multiple Outputs, complex, non-linear systems. A more recent control strategy is Model predictive control (MPC), a modern control method that has shown promising results in systems with complex dynamics. In MPC, a sequence of optimal control inputs are predicted within a short time horizon based on the car dynamics, and soft or hard restriction of the system. In this work, three different nonlinear-MPC (NMPC) controllers were formulated based on a kinematic, and two dynamic models (double-track and single-track). The steering system’s dynamics were additionally identified using experimental data. Each MPC was solved applying direct methods, by transforming the optimal control problem to a Nonlinear programming (NLP) problem using the Multiple shooting scheme with a Runge-Kutta 4 integrator. The NLPs were solved using the state-of-the-art optimization solver IpOpt. Before the real-time implementation, all the NMPC controllers were simulated in different scenarios and multiple configurations. The results allowed to select the most suitable controllers to be implemented in a 1:5 scale robotic car. Finally, two NMPC controllers based on the kinematic, and the single-track dynamic model were implemented in the robotic car. The algorithms were tested in two different scenarios at the maximum possible speed. The obtained results from the tests were very promising, and provide compelling evidence that MPC could be implemented as the core of future autonomous driving algorithms, since it computes the optimal control inputs, taking in consideration the restrictions inherent to the system.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Control automáticoConducción de automóvilesControladores programablesSistemas no linealeshttps://purl.org/pe-repo/ocde/ford#2.00.00Modeling and track planning for the automation of BMW model carinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería MecatrónicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería Mecatrónica06470028713167https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146050oai:repositorio.pucp.edu.pe:20.500.14657/1460502024-06-10 10:55:03.025http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Modeling and track planning for the automation of BMW model car
title Modeling and track planning for the automation of BMW model car
spellingShingle Modeling and track planning for the automation of BMW model car
Tabuchi Fukuhara, Rubén Toshiharu
Control automático
Conducción de automóviles
Controladores programables
Sistemas no lineales
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Modeling and track planning for the automation of BMW model car
title_full Modeling and track planning for the automation of BMW model car
title_fullStr Modeling and track planning for the automation of BMW model car
title_full_unstemmed Modeling and track planning for the automation of BMW model car
title_sort Modeling and track planning for the automation of BMW model car
author Tabuchi Fukuhara, Rubén Toshiharu
author_facet Tabuchi Fukuhara, Rubén Toshiharu
author_role author
dc.contributor.advisor.fl_str_mv Lin, Shih-Jan
Tafur, Julio
dc.contributor.author.fl_str_mv Tabuchi Fukuhara, Rubén Toshiharu
dc.subject.es_ES.fl_str_mv Control automático
Conducción de automóviles
Controladores programables
Sistemas no lineales
topic Control automático
Conducción de automóviles
Controladores programables
Sistemas no lineales
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description In recent years, autonomous driving technologies have become a topic of growing interest due to the promise of safer and more convenient mode of transportation. An essential element in every autonomous driving system is the control algorithm. Classical control schemes, like PID, are not able to manage Multiple Inputs-Multiple Outputs, complex, non-linear systems. A more recent control strategy is Model predictive control (MPC), a modern control method that has shown promising results in systems with complex dynamics. In MPC, a sequence of optimal control inputs are predicted within a short time horizon based on the car dynamics, and soft or hard restriction of the system. In this work, three different nonlinear-MPC (NMPC) controllers were formulated based on a kinematic, and two dynamic models (double-track and single-track). The steering system’s dynamics were additionally identified using experimental data. Each MPC was solved applying direct methods, by transforming the optimal control problem to a Nonlinear programming (NLP) problem using the Multiple shooting scheme with a Runge-Kutta 4 integrator. The NLPs were solved using the state-of-the-art optimization solver IpOpt. Before the real-time implementation, all the NMPC controllers were simulated in different scenarios and multiple configurations. The results allowed to select the most suitable controllers to be implemented in a 1:5 scale robotic car. Finally, two NMPC controllers based on the kinematic, and the single-track dynamic model were implemented in the robotic car. The algorithms were tested in two different scenarios at the maximum possible speed. The obtained results from the tests were very promising, and provide compelling evidence that MPC could be implemented as the core of future autonomous driving algorithms, since it computes the optimal control inputs, taking in consideration the restrictions inherent to the system.
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-06-28T03:50:40Z
dc.date.available.es_ES.fl_str_mv 2017-06-28T03:50:40Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-06-28
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/8901
url http://hdl.handle.net/20.500.12404/8901
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639013295259648
score 13.927358
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).