Geometric Phase in Photonics

Descripción del Articulo

Las fases geométricas son tema de investigación actual en diversas áreas de la física. Interesa investigarlas tanto por razones de carácter teórico, cuanto por razones ligadas a sus aplicaciones. Entre estas últimas resaltan las aplicaciones en información cuántica. Un computador cuántico está basad...

Descripción completa

Detalles Bibliográficos
Autor: Loredo Rosillo, Juan Carlos
Formato: tesis de maestría
Fecha de Publicación:2011
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/144941
Enlace del recurso:http://hdl.handle.net/20.500.12404/1404
Nivel de acceso:acceso abierto
Materia:Teoría cuántica
Fotónica
Geometría
Óptica cuántica
https://purl.org/pe-repo/ocde/ford#1.03.00
id RPUC_0c1150940d3013d17836d9756b0b6d4d
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/144941
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Zela Martínez, Francisco Antonio deLoredo Rosillo, Juan Carlos2012-06-07T16:26:08Z2012-06-07T16:26:08Z20112012-06-07http://hdl.handle.net/20.500.12404/1404Las fases geométricas son tema de investigación actual en diversas áreas de la física. Interesa investigarlas tanto por razones de carácter teórico, cuanto por razones ligadas a sus aplicaciones. Entre estas últimas resaltan las aplicaciones en información cuántica. Un computador cuántico está basado en la posibilidad de generar, almacenar y manipular bits de información codificados en los grados de libertad de sistemas cuánticos. Estos son llamados qubits. Los qubits son superposiciones coherentes de dos estados fundamentales. Mientras su contraparte clásica puede valer 0 o 1 excluyentemente, el qubit puede tomar ambos valores 0 y 1 simultáneamente. Esto hace posible procesar información con mucha mayor rapidez en comparación a una computadora clásica. El problema central con los qubits es que son sumamente frágiles, de modo que su tiempo de vida media es muy pequeño. El fenómeno que lleva a un estado de superposición hacia un estado clásico se llama decoherencia. Para que un computador cuántico sea viable, es necesario contar con qubits cuya vida media sea mayor que el tiempo que toma realizar operaciones sobre ellos (computación). Una ruta muy promisoria es la que se basa en las fases geométricas. Ellas permiten realizar operaciones que, de un lado, pueden ser muy rápidas y, de otro lado, pueden ser inmunes o muy robustas frente a la decoherencia. Para implementar computación cuántica geométrica, es entonces necesario ser capaz de manipular fases geométricas con gran versatilidad. Contribuyendo a este ín, esta tesis presenta nuevos resultados en la manipulación de fases geométricas que aparecen cuando el qubit está codificado en fotones polarizados. Esta tesis contiene dos partes principales. En la primera parte hacemos un intento preliminar en manipular fases en estados de polarización. Específicamente, tratamos a la fase de Pancharatnam (fase total) que resulta de evoluciones unitarias arbitrarias. Discutimos los aspectos teóricos involucrados y mostramos en detalle como hacer que un estado de polarización siga cualquier curva sobre la esfera de Poincaré. Luego presentamos los métodos utilizados para llevar a cabo las mediciones de la fase total acumulada a lo largo de la evolución del estado. En la segunda parte de esta tesis, extendemos nuestros métodos y desarrollamos técnicas para suprimir localmente las fases dinámicas que puedan aparecer durante la evolución del estado de polarización. Esto nos permite observar y medir fases geométricas. Usando métodos similares a los discutidos en la primera parte, mostramos finalmente que las fases geométricas observadas experimentalmente coinciden con las predicciones teóricas con buena aproximación.spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Teoría cuánticaFotónicaGeometríaÓptica cuánticahttps://purl.org/pe-repo/ocde/ford#1.03.00Geometric Phase in Photonicsinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en FísicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoFísica10540939533017https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/144941oai:repositorio.pucp.edu.pe:20.500.14657/1449412024-06-10 10:21:54.028http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Geometric Phase in Photonics
title Geometric Phase in Photonics
spellingShingle Geometric Phase in Photonics
Loredo Rosillo, Juan Carlos
Teoría cuántica
Fotónica
Geometría
Óptica cuántica
https://purl.org/pe-repo/ocde/ford#1.03.00
title_short Geometric Phase in Photonics
title_full Geometric Phase in Photonics
title_fullStr Geometric Phase in Photonics
title_full_unstemmed Geometric Phase in Photonics
title_sort Geometric Phase in Photonics
author Loredo Rosillo, Juan Carlos
author_facet Loredo Rosillo, Juan Carlos
author_role author
dc.contributor.advisor.fl_str_mv Zela Martínez, Francisco Antonio de
dc.contributor.author.fl_str_mv Loredo Rosillo, Juan Carlos
dc.subject.es_ES.fl_str_mv Teoría cuántica
Fotónica
Geometría
Óptica cuántica
topic Teoría cuántica
Fotónica
Geometría
Óptica cuántica
https://purl.org/pe-repo/ocde/ford#1.03.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.00
description Las fases geométricas son tema de investigación actual en diversas áreas de la física. Interesa investigarlas tanto por razones de carácter teórico, cuanto por razones ligadas a sus aplicaciones. Entre estas últimas resaltan las aplicaciones en información cuántica. Un computador cuántico está basado en la posibilidad de generar, almacenar y manipular bits de información codificados en los grados de libertad de sistemas cuánticos. Estos son llamados qubits. Los qubits son superposiciones coherentes de dos estados fundamentales. Mientras su contraparte clásica puede valer 0 o 1 excluyentemente, el qubit puede tomar ambos valores 0 y 1 simultáneamente. Esto hace posible procesar información con mucha mayor rapidez en comparación a una computadora clásica. El problema central con los qubits es que son sumamente frágiles, de modo que su tiempo de vida media es muy pequeño. El fenómeno que lleva a un estado de superposición hacia un estado clásico se llama decoherencia. Para que un computador cuántico sea viable, es necesario contar con qubits cuya vida media sea mayor que el tiempo que toma realizar operaciones sobre ellos (computación). Una ruta muy promisoria es la que se basa en las fases geométricas. Ellas permiten realizar operaciones que, de un lado, pueden ser muy rápidas y, de otro lado, pueden ser inmunes o muy robustas frente a la decoherencia. Para implementar computación cuántica geométrica, es entonces necesario ser capaz de manipular fases geométricas con gran versatilidad. Contribuyendo a este ín, esta tesis presenta nuevos resultados en la manipulación de fases geométricas que aparecen cuando el qubit está codificado en fotones polarizados. Esta tesis contiene dos partes principales. En la primera parte hacemos un intento preliminar en manipular fases en estados de polarización. Específicamente, tratamos a la fase de Pancharatnam (fase total) que resulta de evoluciones unitarias arbitrarias. Discutimos los aspectos teóricos involucrados y mostramos en detalle como hacer que un estado de polarización siga cualquier curva sobre la esfera de Poincaré. Luego presentamos los métodos utilizados para llevar a cabo las mediciones de la fase total acumulada a lo largo de la evolución del estado. En la segunda parte de esta tesis, extendemos nuestros métodos y desarrollamos técnicas para suprimir localmente las fases dinámicas que puedan aparecer durante la evolución del estado de polarización. Esto nos permite observar y medir fases geométricas. Usando métodos similares a los discutidos en la primera parte, mostramos finalmente que las fases geométricas observadas experimentalmente coinciden con las predicciones teóricas con buena aproximación.
publishDate 2011
dc.date.created.es_ES.fl_str_mv 2011
dc.date.accessioned.es_ES.fl_str_mv 2012-06-07T16:26:08Z
dc.date.available.es_ES.fl_str_mv 2012-06-07T16:26:08Z
dc.date.issued.fl_str_mv 2012-06-07
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/1404
url http://hdl.handle.net/20.500.12404/1404
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638450910396416
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).