El lema de Urysohn y algunas de sus aplicaciones
Descripción del Articulo
En el presente trabajo de investigación, primeramente se prueba el Teorema de Urysohn (lema de Urysohn), en el cual indica que un espacio topológico es normal si, y sólo si, cualquier par de subconjuntos disjuntos y cerrados pueden ser separados por una función continua. Este lema se utiliza comúnme...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2018 |
Institución: | Universidad Nacional Del Altiplano |
Repositorio: | UNAP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:https://repositorio.unap.edu.pe:20.500.14082/7322 |
Enlace del recurso: | http://repositorio.unap.edu.pe/handle/20.500.14082/7322 |
Nivel de acceso: | acceso abierto |
Materia: | Teorema (Lema de Urysohn) Topología |
id |
RNAP_61dbe2feb4901cc27c0ff9ac7854577f |
---|---|
oai_identifier_str |
oai:https://repositorio.unap.edu.pe:20.500.14082/7322 |
network_acronym_str |
RNAP |
network_name_str |
UNAP-Institucional |
repository_id_str |
9382 |
dc.title.es_PE.fl_str_mv |
El lema de Urysohn y algunas de sus aplicaciones |
title |
El lema de Urysohn y algunas de sus aplicaciones |
spellingShingle |
El lema de Urysohn y algunas de sus aplicaciones Quispe Machaca, Francisco Teorema (Lema de Urysohn) Topología |
title_short |
El lema de Urysohn y algunas de sus aplicaciones |
title_full |
El lema de Urysohn y algunas de sus aplicaciones |
title_fullStr |
El lema de Urysohn y algunas de sus aplicaciones |
title_full_unstemmed |
El lema de Urysohn y algunas de sus aplicaciones |
title_sort |
El lema de Urysohn y algunas de sus aplicaciones |
author |
Quispe Machaca, Francisco |
author_facet |
Quispe Machaca, Francisco |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Villalta Pacori, Julio Cesar |
dc.contributor.author.fl_str_mv |
Quispe Machaca, Francisco |
dc.subject.es_PE.fl_str_mv |
Teorema (Lema de Urysohn) Topología |
topic |
Teorema (Lema de Urysohn) Topología |
description |
En el presente trabajo de investigación, primeramente se prueba el Teorema de Urysohn (lema de Urysohn), en el cual indica que un espacio topológico es normal si, y sólo si, cualquier par de subconjuntos disjuntos y cerrados pueden ser separados por una función continua. Este lema se utiliza comúnmente para la construcción de funciones continuas con varias propiedades en espacios normales. Es ampliamente aplicable, ya que todos los espacios métricos y todos los espacios de Hausdorff compactos son normales. Una primera aplicación del Lema de Urysohn constituye el Teorema de Metrización de Urysohn. Otra aplicación es el Teorema de Extensión de Tietze. Finalmente, probamos un Teorema que estable la conexión entre el lema de Urysohn y el Teorema de extensión de Tietze. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-07-09T14:25:04Z |
dc.date.available.none.fl_str_mv |
2018-07-09T14:25:04Z |
dc.date.issued.fl_str_mv |
2018-06-20 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.unap.edu.pe/handle/20.500.14082/7322 |
url |
http://repositorio.unap.edu.pe/handle/20.500.14082/7322 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional del Altiplano. Repositorio Institucional - UNAP |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Nacional del Altiplano Repositorio Institucional - UNAP |
dc.source.none.fl_str_mv |
reponame:UNAP-Institucional instname:Universidad Nacional Del Altiplano instacron:UNAP |
instname_str |
Universidad Nacional Del Altiplano |
instacron_str |
UNAP |
institution |
UNAP |
reponame_str |
UNAP-Institucional |
collection |
UNAP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.unap.edu.pe/bitstream/20.500.14082/7322/1/Quispe_Machaca_Francisco.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/7322/2/license.txt https://repositorio.unap.edu.pe/bitstream/20.500.14082/7322/3/Quispe_Machaca_Francisco.pdf.txt |
bitstream.checksum.fl_str_mv |
9dde9a1251b9be2447e60ed44007bfad c52066b9c50a8f86be96c82978636682 c114670e086b74f47062290768555422 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional de la Universidad Nacional del Altiplano |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1819880864252690432 |
spelling |
Villalta Pacori, Julio CesarQuispe Machaca, Francisco2018-07-09T14:25:04Z2018-07-09T14:25:04Z2018-06-20http://repositorio.unap.edu.pe/handle/20.500.14082/7322En el presente trabajo de investigación, primeramente se prueba el Teorema de Urysohn (lema de Urysohn), en el cual indica que un espacio topológico es normal si, y sólo si, cualquier par de subconjuntos disjuntos y cerrados pueden ser separados por una función continua. Este lema se utiliza comúnmente para la construcción de funciones continuas con varias propiedades en espacios normales. Es ampliamente aplicable, ya que todos los espacios métricos y todos los espacios de Hausdorff compactos son normales. Una primera aplicación del Lema de Urysohn constituye el Teorema de Metrización de Urysohn. Otra aplicación es el Teorema de Extensión de Tietze. Finalmente, probamos un Teorema que estable la conexión entre el lema de Urysohn y el Teorema de extensión de Tietze.Tesisapplication/pdfspaUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esUniversidad Nacional del AltiplanoRepositorio Institucional - UNAPreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPTeorema (Lema de Urysohn)TopologíaEl lema de Urysohn y algunas de sus aplicacionesinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en Ciencias Físico MatemáticasCiencias Físico MatemáticasUniversidad Nacional del Altiplano. Facultad de Ingeniería Civil y ArquitecturaTítulo Profesionalhttps://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#tituloProfesional533016ORIGINALQuispe_Machaca_Francisco.pdfQuispe_Machaca_Francisco.pdfapplication/pdf1610944https://repositorio.unap.edu.pe/bitstream/20.500.14082/7322/1/Quispe_Machaca_Francisco.pdf9dde9a1251b9be2447e60ed44007bfadMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unap.edu.pe/bitstream/20.500.14082/7322/2/license.txtc52066b9c50a8f86be96c82978636682MD52TEXTQuispe_Machaca_Francisco.pdf.txtQuispe_Machaca_Francisco.pdf.txtExtracted texttext/plain113322https://repositorio.unap.edu.pe/bitstream/20.500.14082/7322/3/Quispe_Machaca_Francisco.pdf.txtc114670e086b74f47062290768555422MD5320.500.14082/7322oai:https://repositorio.unap.edu.pe:20.500.14082/73222024-02-27 14:29:06.291Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.edu77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg== |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).