Deep Learning Techniques and Tools for Intelligent Weather Forecasting

Descripción del Articulo

In this paper, an analysis of deep learning techniques for weather forecasting using statistical downscaling approaches was developed. These are important, since they allow adjusting large-scale climate projections generated by the GCM climate model to more accurate and defined forecasts for specifi...

Descripción completa

Detalles Bibliográficos
Autores: Parimango Gómez, Kevin, Gutierrez Diaz, Jose Luis, Torres Villanueva, Marcelino
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/210
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/210
https://doi.org/10.48168/innosoft.s23.a210
https://purl.org/42411/s23/a210
https://n2t.net/ark:/42411/s23/a210
Nivel de acceso:acceso abierto
Materia:climate model
weather forecasting
downscaling
General Circulation Models
Convolutional Neural Networks
Adversarial Generative Networks
modelo climático
predicción meteorológica
reducción de escala
Modelos de Circulación General
Redes Neuronales Convolucionales
Redes Generativas Adversariales
id REVUSALLE_82871d2caee9700c731d4c8f62710675
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/210
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Deep Learning Techniques and Tools for Intelligent Weather ForecastingTécnicas y Herramientas de Deep Learning para la Predicción Meteorológica Inteligente Parimango Gómez, Kevin Gutierrez Diaz, Jose LuisTorres Villanueva, Marcelinoclimate modelweather forecastingdownscalingGeneral Circulation ModelsConvolutional Neural NetworksAdversarial Generative Networksmodelo climáticopredicción meteorológicareducción de escalaModelos de Circulación GeneralRedes Neuronales ConvolucionalesRedes Generativas AdversarialesIn this paper, an analysis of deep learning techniques for weather forecasting using statistical downscaling approaches was developed. These are important, since they allow adjusting large-scale climate projections generated by the GCM climate model to more accurate and defined forecasts for specific areas, thus allowing overcoming the limitations of traditional numerical models in the representation of local and small-scale phenomena. Studies implementing Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) were analyzed in order to improve the spatial and temporal resolution of climate data. Both tools and techniques have proven to be effective in projects such as VALUE, which is in charge of evaluating downscaling methods in Europe, and DL4DS, a Python library in charge of applying deep learning algorithms to empirical downscaling of climate data. The main objective of this paper was to analyze the effectiveness of both tools and techniques focused on accuracy, scalability and computational efficiency, providing a complete overview of their use for the improvement of local weather forecasting.En el presente artículo, se desarrolló un análisis de las técnicas de aprendizaje profundo para lograr una predicción meteorológica usando los enfoques estadísticos de reducción de escala. Estos son importantes, ya que permiten ajustar las proyecciones climáticas de gran escala generadas por el modelo climático MCG a pronósticos más exactos y definidos para áreas específicas, de tal manera permitiendo sobrepasar las limitaciones de los modelos numéricos tradicionales en la representación de fenómenos locales y de pequeña escala. Se analizaron estudios que ponen en práctica las Redes Neuronales Convolucionales (CNN) y Redes Generativas Adversariales (GAN) con el objetivo de poder mejorar la resolución espacial y temporal de los datos climáticos. Ambas herramientas y técnicas han demostrado ser efectivas en proyectos como VALUE, que se encarga de evaluar métodos de downscaling en Europa, y DL4DS, una biblioteca en Python, encargada de aplicar algoritmos de aprendizaje profundo al downscaling empírico de datos climáticos. El principal objetivo de este artículo fue analizar la efectividad de ambas herramientas y técnicas enfocadas en la precisión, escalabilidad y eficiencia computacional, brindando una perspectiva completa de su uso para la mejora de las predicciones meteorológicas a nivel local.Universidad La Salle2025-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionReview papersArtículos de revisiónapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/210https://doi.org/10.48168/innosoft.s23.a210https://purl.org/42411/s23/a210https://n2t.net/ark:/42411/s23/a210Innovation and Software; Vol 6 No 1 (2025): March - August; 142-151Innovación y Software; Vol. 6 Núm. 1 (2025): Marzo - Agosto; 142-1512708-09352708-0927https://doi.org/10.48168/innosoft.s23https://purl.org/42411/s23https://n2t.net/ark:/42411/s23reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/210/351https://revistas.ulasalle.edu.pe/innosoft/article/view/210/352Derechos de autor 2025 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/2102025-07-03T08:02:34Z
dc.title.none.fl_str_mv Deep Learning Techniques and Tools for Intelligent Weather Forecasting
Técnicas y Herramientas de Deep Learning para la Predicción Meteorológica Inteligente
title Deep Learning Techniques and Tools for Intelligent Weather Forecasting
spellingShingle Deep Learning Techniques and Tools for Intelligent Weather Forecasting
Parimango Gómez, Kevin
climate model
weather forecasting
downscaling
General Circulation Models
Convolutional Neural Networks
Adversarial Generative Networks
modelo climático
predicción meteorológica
reducción de escala
Modelos de Circulación General
Redes Neuronales Convolucionales
Redes Generativas Adversariales
title_short Deep Learning Techniques and Tools for Intelligent Weather Forecasting
title_full Deep Learning Techniques and Tools for Intelligent Weather Forecasting
title_fullStr Deep Learning Techniques and Tools for Intelligent Weather Forecasting
title_full_unstemmed Deep Learning Techniques and Tools for Intelligent Weather Forecasting
title_sort Deep Learning Techniques and Tools for Intelligent Weather Forecasting
dc.creator.none.fl_str_mv Parimango Gómez, Kevin
Gutierrez Diaz, Jose Luis
Torres Villanueva, Marcelino
author Parimango Gómez, Kevin
author_facet Parimango Gómez, Kevin
Gutierrez Diaz, Jose Luis
Torres Villanueva, Marcelino
author_role author
author2 Gutierrez Diaz, Jose Luis
Torres Villanueva, Marcelino
author2_role author
author
dc.subject.none.fl_str_mv climate model
weather forecasting
downscaling
General Circulation Models
Convolutional Neural Networks
Adversarial Generative Networks
modelo climático
predicción meteorológica
reducción de escala
Modelos de Circulación General
Redes Neuronales Convolucionales
Redes Generativas Adversariales
topic climate model
weather forecasting
downscaling
General Circulation Models
Convolutional Neural Networks
Adversarial Generative Networks
modelo climático
predicción meteorológica
reducción de escala
Modelos de Circulación General
Redes Neuronales Convolucionales
Redes Generativas Adversariales
description In this paper, an analysis of deep learning techniques for weather forecasting using statistical downscaling approaches was developed. These are important, since they allow adjusting large-scale climate projections generated by the GCM climate model to more accurate and defined forecasts for specific areas, thus allowing overcoming the limitations of traditional numerical models in the representation of local and small-scale phenomena. Studies implementing Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) were analyzed in order to improve the spatial and temporal resolution of climate data. Both tools and techniques have proven to be effective in projects such as VALUE, which is in charge of evaluating downscaling methods in Europe, and DL4DS, a Python library in charge of applying deep learning algorithms to empirical downscaling of climate data. The main objective of this paper was to analyze the effectiveness of both tools and techniques focused on accuracy, scalability and computational efficiency, providing a complete overview of their use for the improvement of local weather forecasting.
publishDate 2025
dc.date.none.fl_str_mv 2025-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Review papers
Artículos de revisión
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/210
https://doi.org/10.48168/innosoft.s23.a210
https://purl.org/42411/s23/a210
https://n2t.net/ark:/42411/s23/a210
url https://revistas.ulasalle.edu.pe/innosoft/article/view/210
https://doi.org/10.48168/innosoft.s23.a210
https://purl.org/42411/s23/a210
https://n2t.net/ark:/42411/s23/a210
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/210/351
https://revistas.ulasalle.edu.pe/innosoft/article/view/210/352
dc.rights.none.fl_str_mv Derechos de autor 2025 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 6 No 1 (2025): March - August; 142-151
Innovación y Software; Vol. 6 Núm. 1 (2025): Marzo - Agosto; 142-151
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s23
https://purl.org/42411/s23
https://n2t.net/ark:/42411/s23
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843358290493308928
score 12.659675
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).