Prediction of arterial hypertension through a logistic regression system
Descripción del Articulo
In Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad La Salle |
| Repositorio: | Revistas - Universidad La Salle |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/44 |
| Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/44 https://doi.org/10.48168/innosoft.s6.a44 https://purl.org/42411/s6/a44 https://n2t.net/ark:/42411/s6/a44 |
| Nivel de acceso: | acceso abierto |
| Materia: | Arterial hypertension Artificial Intelligence Blood Pressure Logistic Regression Hipertensión arterial Inteligencia Artificial Regresión logística Presión arterial |
| id |
REVUSALLE_4de8f6656e08719bb4a7f4381f216c43 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/44 |
| network_acronym_str |
REVUSALLE |
| network_name_str |
Revistas - Universidad La Salle |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Prediction of arterial hypertension through a logistic regression system Predicción de hipertensión arterial a través de un sistema de regresión logística |
| title |
Prediction of arterial hypertension through a logistic regression system |
| spellingShingle |
Prediction of arterial hypertension through a logistic regression system Tesillo Gomez, Cynthia Mayumi Arterial hypertension Artificial Intelligence Blood Pressure Logistic Regression Hipertensión arterial Inteligencia Artificial Regresión logística Presión arterial |
| title_short |
Prediction of arterial hypertension through a logistic regression system |
| title_full |
Prediction of arterial hypertension through a logistic regression system |
| title_fullStr |
Prediction of arterial hypertension through a logistic regression system |
| title_full_unstemmed |
Prediction of arterial hypertension through a logistic regression system |
| title_sort |
Prediction of arterial hypertension through a logistic regression system |
| dc.creator.none.fl_str_mv |
Tesillo Gomez, Cynthia Mayumi Escobar Arcaya, Yuri Alexander León Gutierrez, Edwin Daniel |
| author |
Tesillo Gomez, Cynthia Mayumi |
| author_facet |
Tesillo Gomez, Cynthia Mayumi Escobar Arcaya, Yuri Alexander León Gutierrez, Edwin Daniel |
| author_role |
author |
| author2 |
Escobar Arcaya, Yuri Alexander León Gutierrez, Edwin Daniel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Arterial hypertension Artificial Intelligence Blood Pressure Logistic Regression Hipertensión arterial Inteligencia Artificial Regresión logística Presión arterial |
| topic |
Arterial hypertension Artificial Intelligence Blood Pressure Logistic Regression Hipertensión arterial Inteligencia Artificial Regresión logística Presión arterial |
| description |
In Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to the 2017 Demographic and Family Health Survey Survey, although the prevalence of hypertension in people aged 15 years and over would have decreased from 14.8% in 2014 to 13.6%, it implies that more than 3 million Peruvians live with high blood pressure. For this reason, our goal is the rapid diagnosis of this silent disease. In the present work, the logistic regression system was used, for which there is a dataset of 5615 analyzed records. This article presents the possibility of detecting a disease such as high blood pressure based on artificial intelligence, since this evil has been increasing in the last years. For this reason, the objective is to quickly predict a possible diagnosis of arterial hypertension, for this, a dataset of 5615 records was analyzed in the Jupyter Notebook web application, establishing 9 input variables and 1 output, in addition, the logistic regression system was used, missing data treatments and outlaiers, graphs of variables, obtaining as a result an acceptable average precision of 87%. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper text Artículos originales |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/44 https://doi.org/10.48168/innosoft.s6.a44 https://purl.org/42411/s6/a44 https://n2t.net/ark:/42411/s6/a44 |
| url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/44 https://doi.org/10.48168/innosoft.s6.a44 https://purl.org/42411/s6/a44 https://n2t.net/ark:/42411/s6/a44 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/44/44 https://revistas.ulasalle.edu.pe/innosoft/article/view/44/45 https://purl.org/42411/s6/a44/g44 https://purl.org/42411/s6/a44/g45 https://n2t.net/ark:/42411/s6/a44/g44 https://n2t.net/ark:/42411/s6/a44/g45 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.coverage.none.fl_str_mv |
2021 2021 |
| dc.publisher.none.fl_str_mv |
Universidad La Salle |
| publisher.none.fl_str_mv |
Universidad La Salle |
| dc.source.none.fl_str_mv |
Innovation and Software; Vol 2 No 2 (2021): September - February; 60-74 Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 60-74 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s6 https://purl.org/42411/s6 https://n2t.net/ark:/42411/s6 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
| instname_str |
Universidad La Salle |
| instacron_str |
USALLE |
| institution |
USALLE |
| reponame_str |
Revistas - Universidad La Salle |
| collection |
Revistas - Universidad La Salle |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847163354996539392 |
| spelling |
Prediction of arterial hypertension through a logistic regression systemPredicción de hipertensión arterial a través de un sistema de regresión logísticaTesillo Gomez, Cynthia MayumiEscobar Arcaya, Yuri AlexanderLeón Gutierrez, Edwin DanielArterial hypertensionArtificial IntelligenceBlood PressureLogistic RegressionHipertensión arterialInteligencia ArtificialRegresión logísticaPresión arterialIn Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to the 2017 Demographic and Family Health Survey Survey, although the prevalence of hypertension in people aged 15 years and over would have decreased from 14.8% in 2014 to 13.6%, it implies that more than 3 million Peruvians live with high blood pressure. For this reason, our goal is the rapid diagnosis of this silent disease. In the present work, the logistic regression system was used, for which there is a dataset of 5615 analyzed records. This article presents the possibility of detecting a disease such as high blood pressure based on artificial intelligence, since this evil has been increasing in the last years. For this reason, the objective is to quickly predict a possible diagnosis of arterial hypertension, for this, a dataset of 5615 records was analyzed in the Jupyter Notebook web application, establishing 9 input variables and 1 output, in addition, the logistic regression system was used, missing data treatments and outlaiers, graphs of variables, obtaining as a result an acceptable average precision of 87%.En el Perú y el mundo entero la hipertensión es una enfermedad que puede avanzar sin manifestar ningún síntoma o éstos ser muy leves. Se puede tener hipertensión arterial y no sentir ninguna manifestación, la hipertensión arterial es un serio problema de salud pública en países en desarrollo como el nuestro: según la Encuesta Demográfica y de Salud Familiar de 2017, aunque la prevalencia de hipertensión en personas de 15 años a más se habría reducido de 14,8 % en 2014, a 13,6 %, implica que más de 3 millones de peruanos viven con hipertensión arterial. Por ese motivo nuestro objetivo es el rápido diagnóstico de esta enfermedad silenciosa, en el presente trabajo se utilizó el sistema de regresión logística, para el cual se posee un dataset de 5615 registros analizados. Este artículo presenta la posibilidad de detectar una enfermedad como la hipertensión arterial basado en inteligencia artificial, ya que este mal ha ido aumentando en los últimos años. Por ese motivo el objetivo es predecir de manera rápida un posible diagnóstico de hipertensión arterial, para ello se analizó un dataset de 5615 registros en la aplicación web Jupyter Notebook, estableciendo 9 variables de entrada y 1 de salida, además se utilizó el sistema de regresión logística, tratamientos de datos missing y outlaiers, gráficas de variables, obteniendo como resultado una precisión media aceptable del 87%.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/44https://doi.org/10.48168/innosoft.s6.a44https://purl.org/42411/s6/a44https://n2t.net/ark:/42411/s6/a44Innovation and Software; Vol 2 No 2 (2021): September - February; 60-74Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 60-742708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/44/44https://revistas.ulasalle.edu.pe/innosoft/article/view/44/45https://purl.org/42411/s6/a44/g44https://purl.org/42411/s6/a44/g45https://n2t.net/ark:/42411/s6/a44/g44https://n2t.net/ark:/42411/s6/a44/g4520212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/442023-05-24T20:32:04Z |
| score |
13.108393 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).