Prediction of arterial hypertension through a logistic regression system

Descripción del Articulo

In Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to...

Descripción completa

Detalles Bibliográficos
Autores: Tesillo Gomez, Cynthia Mayumi, Escobar Arcaya, Yuri Alexander, León Gutierrez, Edwin Daniel
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/44
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/44
https://doi.org/10.48168/innosoft.s6.a44
https://purl.org/42411/s6/a44
https://n2t.net/ark:/42411/s6/a44
Nivel de acceso:acceso abierto
Materia:Arterial hypertension
Artificial Intelligence
Blood Pressure
Logistic Regression
Hipertensión arterial
Inteligencia Artificial
Regresión logística
Presión arterial
id REVUSALLE_4de8f6656e08719bb4a7f4381f216c43
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/44
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
dc.title.none.fl_str_mv Prediction of arterial hypertension through a logistic regression system
Predicción de hipertensión arterial a través de un sistema de regresión logística
title Prediction of arterial hypertension through a logistic regression system
spellingShingle Prediction of arterial hypertension through a logistic regression system
Tesillo Gomez, Cynthia Mayumi
Arterial hypertension
Artificial Intelligence
Blood Pressure
Logistic Regression
Hipertensión arterial
Inteligencia Artificial
Regresión logística
Presión arterial
title_short Prediction of arterial hypertension through a logistic regression system
title_full Prediction of arterial hypertension through a logistic regression system
title_fullStr Prediction of arterial hypertension through a logistic regression system
title_full_unstemmed Prediction of arterial hypertension through a logistic regression system
title_sort Prediction of arterial hypertension through a logistic regression system
dc.creator.none.fl_str_mv Tesillo Gomez, Cynthia Mayumi
Escobar Arcaya, Yuri Alexander
León Gutierrez, Edwin Daniel
author Tesillo Gomez, Cynthia Mayumi
author_facet Tesillo Gomez, Cynthia Mayumi
Escobar Arcaya, Yuri Alexander
León Gutierrez, Edwin Daniel
author_role author
author2 Escobar Arcaya, Yuri Alexander
León Gutierrez, Edwin Daniel
author2_role author
author
dc.subject.none.fl_str_mv Arterial hypertension
Artificial Intelligence
Blood Pressure
Logistic Regression
Hipertensión arterial
Inteligencia Artificial
Regresión logística
Presión arterial
topic Arterial hypertension
Artificial Intelligence
Blood Pressure
Logistic Regression
Hipertensión arterial
Inteligencia Artificial
Regresión logística
Presión arterial
description In Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to the 2017 Demographic and Family Health Survey Survey, although the prevalence of hypertension in people aged 15 years and over would have decreased from 14.8% in 2014 to 13.6%, it implies that more than 3 million Peruvians live with high blood pressure. For this reason, our goal is the rapid diagnosis of this silent disease. In the present work, the logistic regression system was used, for which there is a dataset of 5615 analyzed records. This article presents the possibility of detecting a disease such as high blood pressure based on artificial intelligence, since this evil has been increasing in the last years. For this reason, the objective is to quickly predict a possible diagnosis of arterial hypertension, for this, a dataset of 5615 records was analyzed in the Jupyter Notebook web application, establishing 9 input variables and 1 output, in addition, the logistic regression system was used, missing data treatments and outlaiers, graphs of variables, obtaining as a result an acceptable average precision of 87%.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/44
https://doi.org/10.48168/innosoft.s6.a44
https://purl.org/42411/s6/a44
https://n2t.net/ark:/42411/s6/a44
url https://revistas.ulasalle.edu.pe/innosoft/article/view/44
https://doi.org/10.48168/innosoft.s6.a44
https://purl.org/42411/s6/a44
https://n2t.net/ark:/42411/s6/a44
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/44/44
https://revistas.ulasalle.edu.pe/innosoft/article/view/44/45
https://purl.org/42411/s6/a44/g44
https://purl.org/42411/s6/a44/g45
https://n2t.net/ark:/42411/s6/a44/g44
https://n2t.net/ark:/42411/s6/a44/g45
dc.rights.none.fl_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2021
2021
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 2 No 2 (2021): September - February; 60-74
Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 60-74
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s6
https://purl.org/42411/s6
https://n2t.net/ark:/42411/s6
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847163354996539392
spelling Prediction of arterial hypertension through a logistic regression systemPredicción de hipertensión arterial a través de un sistema de regresión logísticaTesillo Gomez, Cynthia MayumiEscobar Arcaya, Yuri AlexanderLeón Gutierrez, Edwin DanielArterial hypertensionArtificial IntelligenceBlood PressureLogistic RegressionHipertensión arterialInteligencia ArtificialRegresión logísticaPresión arterialIn Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to the 2017 Demographic and Family Health Survey Survey, although the prevalence of hypertension in people aged 15 years and over would have decreased from 14.8% in 2014 to 13.6%, it implies that more than 3 million Peruvians live with high blood pressure. For this reason, our goal is the rapid diagnosis of this silent disease. In the present work, the logistic regression system was used, for which there is a dataset of 5615 analyzed records. This article presents the possibility of detecting a disease such as high blood pressure based on artificial intelligence, since this evil has been increasing in the last years. For this reason, the objective is to quickly predict a possible diagnosis of arterial hypertension, for this, a dataset of 5615 records was analyzed in the Jupyter Notebook web application, establishing 9 input variables and 1 output, in addition, the logistic regression system was used, missing data treatments and outlaiers, graphs of variables, obtaining as a result an acceptable average precision of 87%.En el Perú y el mundo entero la hipertensión es una enfermedad que puede avanzar sin manifestar ningún síntoma o éstos ser muy leves. Se puede tener hipertensión arterial y no sentir ninguna manifestación, la hipertensión arterial es un serio problema de salud pública en países en desarrollo como el nuestro: según la Encuesta Demográfica y de Salud Familiar de 2017, aunque la prevalencia de hipertensión en personas de 15 años a más se habría reducido de 14,8 % en 2014, a 13,6 %, implica que más de 3 millones de peruanos viven con hipertensión arterial. Por ese motivo nuestro objetivo es el rápido diagnóstico  de esta enfermedad silenciosa, en el presente trabajo se utilizó  el sistema de regresión logística, para el cual se posee un dataset de 5615 registros analizados. Este artículo presenta la posibilidad de detectar una enfermedad como la hipertensión arterial basado en inteligencia artificial, ya que este mal ha ido aumentando en los últimos años. Por ese motivo el objetivo es predecir de manera rápida un posible diagnóstico de hipertensión arterial, para ello se analizó un dataset de 5615 registros en la aplicación web Jupyter Notebook, estableciendo 9 variables de entrada y 1 de salida, además se utilizó el sistema de regresión logística, tratamientos de datos missing y outlaiers, gráficas de variables, obteniendo como resultado una precisión media aceptable del 87%.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/44https://doi.org/10.48168/innosoft.s6.a44https://purl.org/42411/s6/a44https://n2t.net/ark:/42411/s6/a44Innovation and Software; Vol 2 No 2 (2021): September - February; 60-74Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 60-742708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/44/44https://revistas.ulasalle.edu.pe/innosoft/article/view/44/45https://purl.org/42411/s6/a44/g44https://purl.org/42411/s6/a44/g45https://n2t.net/ark:/42411/s6/a44/g44https://n2t.net/ark:/42411/s6/a44/g4520212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/442023-05-24T20:32:04Z
score 13.108393
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).