Facial recognition system for access control through Artificial Intelligence
Descripción del Articulo
The main objective of this article is the development of a system that allows the facial recognition of a person for access control through Artificial Intelligence. For the development of the system, the Convolutional Neural Networks algorithm was used, which is a recognition model. Likewise, the Py...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad La Salle |
Repositorio: | Revistas - Universidad La Salle |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/78 |
Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/78 https://doi.org/10.48168/innosoft.s11.a78 https://purl.org/42411/s11/a78 https://n2t.net/ark:/42411/s11/a78 |
Nivel de acceso: | acceso abierto |
Materia: | Access Control Artificial Intelligence Convolutional Neural Networks Control de acceso Inteligencia Artificial Redes Neuronales Convolucionales |
id |
REVUSALLE_01f8759f19b278b69f9edb44f5a501b5 |
---|---|
oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/78 |
network_acronym_str |
REVUSALLE |
network_name_str |
Revistas - Universidad La Salle |
repository_id_str |
|
spelling |
Facial recognition system for access control through Artificial IntelligenceSistema de reconocimiento facial para el control de accesos mediante Inteligencia ArtificialReyes Campos, Jean Elias ManuelCastañeda Rodríguez, Christian StephanoAlva Luján, Luis DanielMendoza de los Santos, Alberto CarlosAccess ControlArtificial IntelligenceConvolutional Neural NetworksControl de accesoInteligencia ArtificialRedes Neuronales ConvolucionalesThe main objective of this article is the development of a system that allows the facial recognition of a person for access control through Artificial Intelligence. For the development of the system, the Convolutional Neural Networks algorithm was used, which is a recognition model. Likewise, the Python programming language and the following libraries such as Numpy, Os, OpenCV and Imutils were used for its implementation. The results obtained according to the hit and using a dataset of 4500 images are approximately 88% in terms of the prediction per person, concluding that the recognition system is effective and has greater efficiency by increasing the size of datasets generated by individuals.El presente artículo tiene como objetivo principal el desarrollo de un sistema que permita el reconocimiento facial de una persona para el control de accesos mediante Inteligencia Artificial. Para el desarrollo del sistema se tuvo como algoritmo Redes Neuronales Convolucionales, el cual es un modelo de reconocimiento. Así mismo se utilizó el lenguaje de programación Python y las librerías siguientes como Numpy, Os, OpenCV e Imutils para su implementación. Los resultados obtenidos según el acierto y utilizando un dataset de 450 imágenes por individuo son de un 88% aproximadamente en cuanto la predicción por persona, concluyendo que el sistema de reconocimiento es eficaz y tiene mayor eficiencia incrementando el tamaño de datasets generados por individuos.Universidad La Salle2023-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/78https://doi.org/10.48168/innosoft.s11.a78https://purl.org/42411/s11/a78https://n2t.net/ark:/42411/s11/a78Innovation and Software; Vol 4 No 1 (2023): March - August; 24-36Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 24-362708-09352708-0927https://doi.org/10.48168/innosoft.s11https://purl.org/42411/s11https://n2t.net/ark:/42411/s11reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/78/91https://revistas.ulasalle.edu.pe/innosoft/article/view/78/92https://purl.org/42411/s11/a78/g91https://purl.org/42411/s11/a78/g92https://n2t.net/ark:/42411/s11/a78/g91https://n2t.net/ark:/42411/s11/a78/g9220232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/782025-07-03T08:02:05Z |
dc.title.none.fl_str_mv |
Facial recognition system for access control through Artificial Intelligence Sistema de reconocimiento facial para el control de accesos mediante Inteligencia Artificial |
title |
Facial recognition system for access control through Artificial Intelligence |
spellingShingle |
Facial recognition system for access control through Artificial Intelligence Reyes Campos, Jean Elias Manuel Access Control Artificial Intelligence Convolutional Neural Networks Control de acceso Inteligencia Artificial Redes Neuronales Convolucionales |
title_short |
Facial recognition system for access control through Artificial Intelligence |
title_full |
Facial recognition system for access control through Artificial Intelligence |
title_fullStr |
Facial recognition system for access control through Artificial Intelligence |
title_full_unstemmed |
Facial recognition system for access control through Artificial Intelligence |
title_sort |
Facial recognition system for access control through Artificial Intelligence |
dc.creator.none.fl_str_mv |
Reyes Campos, Jean Elias Manuel Castañeda Rodríguez, Christian Stephano Alva Luján, Luis Daniel Mendoza de los Santos, Alberto Carlos |
author |
Reyes Campos, Jean Elias Manuel |
author_facet |
Reyes Campos, Jean Elias Manuel Castañeda Rodríguez, Christian Stephano Alva Luján, Luis Daniel Mendoza de los Santos, Alberto Carlos |
author_role |
author |
author2 |
Castañeda Rodríguez, Christian Stephano Alva Luján, Luis Daniel Mendoza de los Santos, Alberto Carlos |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Access Control Artificial Intelligence Convolutional Neural Networks Control de acceso Inteligencia Artificial Redes Neuronales Convolucionales |
topic |
Access Control Artificial Intelligence Convolutional Neural Networks Control de acceso Inteligencia Artificial Redes Neuronales Convolucionales |
description |
The main objective of this article is the development of a system that allows the facial recognition of a person for access control through Artificial Intelligence. For the development of the system, the Convolutional Neural Networks algorithm was used, which is a recognition model. Likewise, the Python programming language and the following libraries such as Numpy, Os, OpenCV and Imutils were used for its implementation. The results obtained according to the hit and using a dataset of 4500 images are approximately 88% in terms of the prediction per person, concluding that the recognition system is effective and has greater efficiency by increasing the size of datasets generated by individuals. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper text Artículos originales |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/78 https://doi.org/10.48168/innosoft.s11.a78 https://purl.org/42411/s11/a78 https://n2t.net/ark:/42411/s11/a78 |
url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/78 https://doi.org/10.48168/innosoft.s11.a78 https://purl.org/42411/s11/a78 https://n2t.net/ark:/42411/s11/a78 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/78/91 https://revistas.ulasalle.edu.pe/innosoft/article/view/78/92 https://purl.org/42411/s11/a78/g91 https://purl.org/42411/s11/a78/g92 https://n2t.net/ark:/42411/s11/a78/g91 https://n2t.net/ark:/42411/s11/a78/g92 |
dc.rights.none.fl_str_mv |
Derechos de autor 2023 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2023 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.coverage.none.fl_str_mv |
2023 2023 |
dc.publisher.none.fl_str_mv |
Universidad La Salle |
publisher.none.fl_str_mv |
Universidad La Salle |
dc.source.none.fl_str_mv |
Innovation and Software; Vol 4 No 1 (2023): March - August; 24-36 Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 24-36 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s11 https://purl.org/42411/s11 https://n2t.net/ark:/42411/s11 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
instname_str |
Universidad La Salle |
instacron_str |
USALLE |
institution |
USALLE |
reponame_str |
Revistas - Universidad La Salle |
collection |
Revistas - Universidad La Salle |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1842089924843536384 |
score |
12.8608675 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).