Facial recognition system for access control through Artificial Intelligence

Descripción del Articulo

The main objective of this article is the development of a system that allows the facial recognition of a person for access control through Artificial Intelligence. For the development of the system, the Convolutional Neural Networks algorithm was used, which is a recognition model. Likewise, the Py...

Descripción completa

Detalles Bibliográficos
Autores: Reyes Campos, Jean Elias Manuel, Castañeda Rodríguez, Christian Stephano, Alva Luján, Luis Daniel, Mendoza de los Santos, Alberto Carlos
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/78
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/78
https://doi.org/10.48168/innosoft.s11.a78
https://purl.org/42411/s11/a78
https://n2t.net/ark:/42411/s11/a78
Nivel de acceso:acceso abierto
Materia:Access Control
Artificial Intelligence
Convolutional Neural Networks
Control de acceso
Inteligencia Artificial
Redes Neuronales Convolucionales
id REVUSALLE_01f8759f19b278b69f9edb44f5a501b5
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/78
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Facial recognition system for access control through Artificial IntelligenceSistema de reconocimiento facial para el control de accesos mediante Inteligencia ArtificialReyes Campos, Jean Elias ManuelCastañeda Rodríguez, Christian StephanoAlva Luján, Luis DanielMendoza de los Santos, Alberto CarlosAccess ControlArtificial IntelligenceConvolutional Neural NetworksControl de accesoInteligencia ArtificialRedes Neuronales ConvolucionalesThe main objective of this article is the development of a system that allows the facial recognition of a person for access control through Artificial Intelligence. For the development of the system, the Convolutional Neural Networks algorithm was used, which is a recognition model. Likewise, the Python programming language and the following libraries such as Numpy, Os, OpenCV and Imutils were used for its implementation. The results obtained according to the hit and using a dataset of 4500 images are approximately 88% in terms of the prediction per person, concluding that the recognition system is effective and has greater efficiency by increasing the size of datasets generated by individuals.El presente artículo tiene como objetivo principal el desarrollo de un sistema que permita el reconocimiento facial de una persona para el control de accesos mediante Inteligencia Artificial. Para el desarrollo del sistema se tuvo como algoritmo Redes Neuronales Convolucionales, el cual es un modelo de reconocimiento. Así mismo se utilizó el lenguaje de programación Python y las librerías siguientes como Numpy, Os, OpenCV e Imutils para su implementación. Los resultados obtenidos según el acierto y utilizando un dataset de 450 imágenes por individuo son de un 88% aproximadamente en cuanto la predicción por persona, concluyendo que el sistema de reconocimiento es eficaz y tiene mayor eficiencia incrementando el tamaño de datasets generados por individuos.Universidad La Salle2023-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/78https://doi.org/10.48168/innosoft.s11.a78https://purl.org/42411/s11/a78https://n2t.net/ark:/42411/s11/a78Innovation and Software; Vol 4 No 1 (2023): March - August; 24-36Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 24-362708-09352708-0927https://doi.org/10.48168/innosoft.s11https://purl.org/42411/s11https://n2t.net/ark:/42411/s11reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/78/91https://revistas.ulasalle.edu.pe/innosoft/article/view/78/92https://purl.org/42411/s11/a78/g91https://purl.org/42411/s11/a78/g92https://n2t.net/ark:/42411/s11/a78/g91https://n2t.net/ark:/42411/s11/a78/g9220232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/782025-07-03T08:02:05Z
dc.title.none.fl_str_mv Facial recognition system for access control through Artificial Intelligence
Sistema de reconocimiento facial para el control de accesos mediante Inteligencia Artificial
title Facial recognition system for access control through Artificial Intelligence
spellingShingle Facial recognition system for access control through Artificial Intelligence
Reyes Campos, Jean Elias Manuel
Access Control
Artificial Intelligence
Convolutional Neural Networks
Control de acceso
Inteligencia Artificial
Redes Neuronales Convolucionales
title_short Facial recognition system for access control through Artificial Intelligence
title_full Facial recognition system for access control through Artificial Intelligence
title_fullStr Facial recognition system for access control through Artificial Intelligence
title_full_unstemmed Facial recognition system for access control through Artificial Intelligence
title_sort Facial recognition system for access control through Artificial Intelligence
dc.creator.none.fl_str_mv Reyes Campos, Jean Elias Manuel
Castañeda Rodríguez, Christian Stephano
Alva Luján, Luis Daniel
Mendoza de los Santos, Alberto Carlos
author Reyes Campos, Jean Elias Manuel
author_facet Reyes Campos, Jean Elias Manuel
Castañeda Rodríguez, Christian Stephano
Alva Luján, Luis Daniel
Mendoza de los Santos, Alberto Carlos
author_role author
author2 Castañeda Rodríguez, Christian Stephano
Alva Luján, Luis Daniel
Mendoza de los Santos, Alberto Carlos
author2_role author
author
author
dc.subject.none.fl_str_mv Access Control
Artificial Intelligence
Convolutional Neural Networks
Control de acceso
Inteligencia Artificial
Redes Neuronales Convolucionales
topic Access Control
Artificial Intelligence
Convolutional Neural Networks
Control de acceso
Inteligencia Artificial
Redes Neuronales Convolucionales
description The main objective of this article is the development of a system that allows the facial recognition of a person for access control through Artificial Intelligence. For the development of the system, the Convolutional Neural Networks algorithm was used, which is a recognition model. Likewise, the Python programming language and the following libraries such as Numpy, Os, OpenCV and Imutils were used for its implementation. The results obtained according to the hit and using a dataset of 4500 images are approximately 88% in terms of the prediction per person, concluding that the recognition system is effective and has greater efficiency by increasing the size of datasets generated by individuals.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/78
https://doi.org/10.48168/innosoft.s11.a78
https://purl.org/42411/s11/a78
https://n2t.net/ark:/42411/s11/a78
url https://revistas.ulasalle.edu.pe/innosoft/article/view/78
https://doi.org/10.48168/innosoft.s11.a78
https://purl.org/42411/s11/a78
https://n2t.net/ark:/42411/s11/a78
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/78/91
https://revistas.ulasalle.edu.pe/innosoft/article/view/78/92
https://purl.org/42411/s11/a78/g91
https://purl.org/42411/s11/a78/g92
https://n2t.net/ark:/42411/s11/a78/g91
https://n2t.net/ark:/42411/s11/a78/g92
dc.rights.none.fl_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2023
2023
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 4 No 1 (2023): March - August; 24-36
Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 24-36
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s11
https://purl.org/42411/s11
https://n2t.net/ark:/42411/s11
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1842089924843536384
score 12.8608675
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).