Global research on use of artificial intelligence in imaging for breast cancer detection: bibliometric analysis: Investigación global sobre uso de inteligencia artificial en imagenología para la detección de cáncer de mama: análisis bibliométrico | 全球乳腺癌检测影像学中人工智能应用的研究:文献计量分析

Descripción del Articulo

Introduction: Breast cancer remains one of the most prevalent cancers globally, specifically the most common in females. The use of artificial intelligence promises to contribute to early diagnosis through imaging. Previously, the landscape and evolution of this scientific production have not been d...

Descripción completa

Detalles Bibliográficos
Autores: Murillo León, Juan Guillermo, Espinosa Rivero, Valentina, Saportas Peláez, Isabella, Calderón Mina , Luis Enrique, Cortes Sanjuanelo , Angie Paola, Arias Tamayo, Sebastian Alejandro, Guevara Rosero, Nury Liseida, Cantillo Reines , Manuel, Galeano Ortiz, Ciro Daniel, Picón Jaimes, Yelson Alejandro
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Ricardo Palma
Repositorio:Revistas - Universidad Ricardo Palma
Lenguaje:español
inglés
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/6407
Enlace del recurso:http://revistas.urp.edu.pe/index.php/RFMH/article/view/6407
Nivel de acceso:acceso abierto
Materia:Artificial Intelligence
Mammography
Mammary Ultrasonography
Breast Neoplasms
Bibliometrics
Inteligencia Artificial
Mamografía
Ecografía Mamaria
Cáncer de Mama
Bibliometría
Descripción
Sumario:Introduction: Breast cancer remains one of the most prevalent cancers globally, specifically the most common in females. The use of artificial intelligence promises to contribute to early diagnosis through imaging. Previously, the landscape and evolution of this scientific production have not been described. Methods: Cross-sectional bibliometric study using Scopus as the data source. The bibliometrix package in R was employed for calculating bibliometric indicators and visualizing the results. Results: 1292 documents published between 1989 and 2024 were selected. 75.3% (n=973) were articles with primary data, followed by 16.2% (n=209) corresponding to reviews. An international collaboration rate of 26.5% was identified, with an annual production growth of 10.78%. It was observed that risk classification through screening, digital breast tomosynthesis, transfer learning, segmentation, and feature selection were the most commonly used keywords. In the last five years, deep learning and mammography have been the most popular topics. International collaboration has been led by the United States, China, and the United Kingdom. Conclusions: A notable growth in global research on the use of artificial intelligence in breast cancer imaging for detection was identified, particularly since the 2010s, primarily through the publication of articles with primary data. The relationship between artificial intelligence and imaging for breast cancer diagnosis has focused on risk and prediction.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).