Implementation of an intelligent antimalware system for the detection of malicious links in QR codes

Descripción del Articulo

The increasing use of QR codes across various sectors has facilitated the transfer of information but has also exposed users to new cybersecurity threats, such as quishing, a variant of phishing that leverages these codes to redirect users to malicious websites. To address this issue, the study aime...

Descripción completa

Detalles Bibliográficos
Autores: Huamanchumo Trujillo, Francisco Gerardo, Campos Gamarra, Alejandro Roman, Guevara Saldaña, Rodrigo Alonso, Mendoza De Los Santos, Alberto Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Privada de Tacna
Repositorio:Revistas - Universidad Privada de Tacna
Lenguaje:español
OAI Identifier:oai:revistas.upt.edu.pe:article/1078
Enlace del recurso:https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1078
Nivel de acceso:acceso abierto
Materia:amenazas informáticas
Aprendizaje automático
ciberseguridad
cyber threats
Machine Learning
Cybersecurity
id REVUPT_e610a9482de251d56a4f260eb30f5b9f
oai_identifier_str oai:revistas.upt.edu.pe:article/1078
network_acronym_str REVUPT
network_name_str Revistas - Universidad Privada de Tacna
repository_id_str
spelling Implementation of an intelligent antimalware system for the detection of malicious links in QR codesImplementación de un sistema antimalware inteligente para detección de enlaces maliciosos en códigos QR Huamanchumo Trujillo, Francisco GerardoCampos Gamarra, Alejandro RomanGuevara Saldaña, Rodrigo AlonsoMendoza De Los Santos, Alberto Carlosamenazas informáticasAprendizaje automáticociberseguridadcyber threatsMachine LearningCybersecurityThe increasing use of QR codes across various sectors has facilitated the transfer of information but has also exposed users to new cybersecurity threats, such as quishing, a variant of phishing that leverages these codes to redirect users to malicious websites. To address this issue, the study aimed to implement an antimalware system that employs machine learning alongside the VirusTotal API to analyze and classify links embedded in QR codes in real time. The methodology was structured into four stages: capturing and decoding QR codes using OpenCV, analyzing extracted URLs with the VirusTotal API, issuing preventive alerts based on the link classification, and evaluating system performance with a dataset of 100 QR codes (50 safe and 50 malicious). The results showed 100 % accuracy, 95 % sensitivity, and an average response time of 48.95 ms. No false positives were detected, and only a small number of false negatives were observed, although some codes were classified as uncertain due to insufficient information from VirusTotal. It is concluded that the system is a suitable and adaptable tool for preventing quishing attacks, with potential for implementation in mobile applications and payment systems, as well as possible expansions to other visual encoding technologies.El aumento del uso de códigos QR en diversos sectores ha facilitado la transferencia de información, pero también ha expuesto a los usuarios a nuevas amenazas cibernéticas, como el quishing, una variante del phishing que utiliza estos códigos para redirigir a sitios maliciosos. Ante este problema, el estudio tuvo como objetivo implementar un sistema antimalware que emplea aprendizaje automático junto con la API de VirusTotal para analizar y clasificar enlaces embebidos en códigos QR en tiempo real. La metodología se estructuró en cuatro etapas: captura y decodificación de códigos QR mediante OpenCV, análisis de URLs extraídas utilizando la API de VirusTotal, emisión de alertas preventivas según la clasificación del enlace y evaluación del desempeño con un conjunto de datos de 100 códigos QR (50 seguros y 50 maliciosos). Los resultados mostraron una precisión del 100 %, una sensibilidad del 95 % y un tiempo de respuesta promedio de 48,95 ms. No se detectaron falsos positivos y se observó un bajo número de falsos negativos, aunque algunos códigos quedaron clasificados como inciertos debido a la falta de información en VirusTotal. Se concluye que el sistema es una herramienta adecuada y adaptable para prevenir ataques de quishing, con potencial para su implementación en aplicaciones móviles y sistemas de pago, y posibles expansiones a otras tecnologías de codificación visual.UNIVERSIDAD PRIVADA DE TACNA2024-12-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/107810.47796/ing.v6i00.1078INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería InvestigaINGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga2708-303910.47796/ing.v6i00reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1078/980Derechos de autor 2024 Francisco Gerardo Huamanchumo Trujillo, Alejandro Roman Campos Gamarra, Rodrigo Alonso Guevara Saldaña, Alberto Carlos Mendoza De Los Santoshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/10782024-12-17T17:45:55Z
dc.title.none.fl_str_mv Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
Implementación de un sistema antimalware inteligente para detección de enlaces maliciosos en códigos QR
title Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
spellingShingle Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
Huamanchumo Trujillo, Francisco Gerardo
amenazas informáticas
Aprendizaje automático
ciberseguridad
cyber threats
Machine Learning
Cybersecurity
title_short Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
title_full Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
title_fullStr Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
title_full_unstemmed Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
title_sort Implementation of an intelligent antimalware system for the detection of malicious links in QR codes
dc.creator.none.fl_str_mv Huamanchumo Trujillo, Francisco Gerardo
Campos Gamarra, Alejandro Roman
Guevara Saldaña, Rodrigo Alonso
Mendoza De Los Santos, Alberto Carlos
author Huamanchumo Trujillo, Francisco Gerardo
author_facet Huamanchumo Trujillo, Francisco Gerardo
Campos Gamarra, Alejandro Roman
Guevara Saldaña, Rodrigo Alonso
Mendoza De Los Santos, Alberto Carlos
author_role author
author2 Campos Gamarra, Alejandro Roman
Guevara Saldaña, Rodrigo Alonso
Mendoza De Los Santos, Alberto Carlos
author2_role author
author
author
dc.subject.none.fl_str_mv amenazas informáticas
Aprendizaje automático
ciberseguridad
cyber threats
Machine Learning
Cybersecurity
topic amenazas informáticas
Aprendizaje automático
ciberseguridad
cyber threats
Machine Learning
Cybersecurity
description The increasing use of QR codes across various sectors has facilitated the transfer of information but has also exposed users to new cybersecurity threats, such as quishing, a variant of phishing that leverages these codes to redirect users to malicious websites. To address this issue, the study aimed to implement an antimalware system that employs machine learning alongside the VirusTotal API to analyze and classify links embedded in QR codes in real time. The methodology was structured into four stages: capturing and decoding QR codes using OpenCV, analyzing extracted URLs with the VirusTotal API, issuing preventive alerts based on the link classification, and evaluating system performance with a dataset of 100 QR codes (50 safe and 50 malicious). The results showed 100 % accuracy, 95 % sensitivity, and an average response time of 48.95 ms. No false positives were detected, and only a small number of false negatives were observed, although some codes were classified as uncertain due to insufficient information from VirusTotal. It is concluded that the system is a suitable and adaptable tool for preventing quishing attacks, with potential for implementation in mobile applications and payment systems, as well as possible expansions to other visual encoding technologies.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1078
10.47796/ing.v6i00.1078
url https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1078
identifier_str_mv 10.47796/ing.v6i00.1078
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1078/980
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
dc.source.none.fl_str_mv INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga
INGENIERÍA INVESTIGA; Vol. 6 (2024): Ingeniería Investiga
2708-3039
10.47796/ing.v6i00
reponame:Revistas - Universidad Privada de Tacna
instname:Universidad Privada de Tacna
instacron:UPT
instname_str Universidad Privada de Tacna
instacron_str UPT
institution UPT
reponame_str Revistas - Universidad Privada de Tacna
collection Revistas - Universidad Privada de Tacna
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847426049026031616
score 12.63363
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).