Effectiveness and limitations of biometric systems in identity verification: A systematic review

Descripción del Articulo

Increasing digitization and automation demand advanced and secure methods for access control. This study synthesized artificial intelligence (AI) tools applied in this field, through a literature review in databases such as Scopus, SciELO and IEEE Xplore, using PRISMA and VOSviewer. The bibliometric...

Descripción completa

Detalles Bibliográficos
Autores: Bocanegra Chistama, Bruno Samir, Fernández Salvo, Fernando Arturo, Mendoza De Los Santos, Alberto Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Privada de Tacna
Repositorio:Revistas - Universidad Privada de Tacna
Lenguaje:español
OAI Identifier:oai:revistas.upt.edu.pe:article/1099
Enlace del recurso:https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099
Nivel de acceso:acceso abierto
Materia:control de acceso
sistemas de seguridad
inteligencia artificial
biometría
access control
security systems
artificial intelligence
biometrics
id REVUPT_db1a2bf14b03def82b49654e19a60555
oai_identifier_str oai:revistas.upt.edu.pe:article/1099
network_acronym_str REVUPT
network_name_str Revistas - Universidad Privada de Tacna
repository_id_str
spelling Effectiveness and limitations of biometric systems in identity verification: A systematic reviewEficacia y limitaciones de los sistemas biométricos en la verificación de identidad: Una revisión sistemáticaBocanegra Chistama, Bruno SamirFernández Salvo, Fernando ArturoMendoza De Los Santos, Alberto Carloscontrol de accesosistemas de seguridadinteligencia artificialbiometríaaccess controlsecurity systemsartificial intelligencebiometricsIncreasing digitization and automation demand advanced and secure methods for access control. This study synthesized artificial intelligence (AI) tools applied in this field, through a literature review in databases such as Scopus, SciELO and IEEE Xplore, using PRISMA and VOSviewer. The bibliometric analysis identified China, India, the United States and South Korea as leaders in research, highlighting terms such as machine learning, deep learning, cryptography and biometrics, along with emerging technologies such as blockchain and IoT. Machine learning and deep learning stood out as predominant techniques, while blockchain brought transparency in the management of sensitive data. However, challenges such as high costs, reliance on big data and privacy concerns limit its implementation. It is recommended to explore hybrid methods, optimize AI models and reduce data dependency to improve security and adoption of these technologies.La digitalización y automatización crecientes demandan métodos avanzados y seguros para el control de acceso. Este estudio sintetizó herramientas de inteligencia artificial (IA) aplicadas en este campo, mediante una revisión de literatura en bases como Scopus, SciELO e IEEE Xplore, utilizando PRISMA y VOSviewer. El análisis bibliométrico identificó a China, India, Estados Unidos y Corea del Sur como líderes en investigación, destacando términos como machine learning, deep learning, criptografía y biometría, junto con tecnologías emergentes como blockchain e IoT. Machine learning y deep learning sobresalieron como técnicas predominantes, mientras que blockchain aportó transparencia en la gestión de datos sensibles. Sin embargo, desafíos como altos costos, dependencia de datos extensos y preocupaciones de privacidad limitan su implementación. Se recomienda explorar métodos híbridos, optimizar los modelos de IA y reducir la dependencia de datos para mejorar la seguridad y la adopción de estas tecnologíasUNIVERSIDAD PRIVADA DE TACNA2024-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/109910.47796/ing.v7i00.1099INGENIERÍA INVESTIGA; Vol. 7 (2025): Ingeniería InvestigaINGENIERÍA INVESTIGA; Vol. 7 (2025): Ingeniería Investiga2708-303910.47796/ing.v7i00reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099/984https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099/1055Derechos de autor 2024 Bruno Samir Bocanegra Chistama, Fernando Arturo Fernández Salvo, Alberto Carlos Mendoza De Los Santoshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/10992025-03-06T17:16:14Z
dc.title.none.fl_str_mv Effectiveness and limitations of biometric systems in identity verification: A systematic review
Eficacia y limitaciones de los sistemas biométricos en la verificación de identidad: Una revisión sistemática
title Effectiveness and limitations of biometric systems in identity verification: A systematic review
spellingShingle Effectiveness and limitations of biometric systems in identity verification: A systematic review
Bocanegra Chistama, Bruno Samir
control de acceso
sistemas de seguridad
inteligencia artificial
biometría
access control
security systems
artificial intelligence
biometrics
title_short Effectiveness and limitations of biometric systems in identity verification: A systematic review
title_full Effectiveness and limitations of biometric systems in identity verification: A systematic review
title_fullStr Effectiveness and limitations of biometric systems in identity verification: A systematic review
title_full_unstemmed Effectiveness and limitations of biometric systems in identity verification: A systematic review
title_sort Effectiveness and limitations of biometric systems in identity verification: A systematic review
dc.creator.none.fl_str_mv Bocanegra Chistama, Bruno Samir
Fernández Salvo, Fernando Arturo
Mendoza De Los Santos, Alberto Carlos
author Bocanegra Chistama, Bruno Samir
author_facet Bocanegra Chistama, Bruno Samir
Fernández Salvo, Fernando Arturo
Mendoza De Los Santos, Alberto Carlos
author_role author
author2 Fernández Salvo, Fernando Arturo
Mendoza De Los Santos, Alberto Carlos
author2_role author
author
dc.subject.none.fl_str_mv control de acceso
sistemas de seguridad
inteligencia artificial
biometría
access control
security systems
artificial intelligence
biometrics
topic control de acceso
sistemas de seguridad
inteligencia artificial
biometría
access control
security systems
artificial intelligence
biometrics
description Increasing digitization and automation demand advanced and secure methods for access control. This study synthesized artificial intelligence (AI) tools applied in this field, through a literature review in databases such as Scopus, SciELO and IEEE Xplore, using PRISMA and VOSviewer. The bibliometric analysis identified China, India, the United States and South Korea as leaders in research, highlighting terms such as machine learning, deep learning, cryptography and biometrics, along with emerging technologies such as blockchain and IoT. Machine learning and deep learning stood out as predominant techniques, while blockchain brought transparency in the management of sensitive data. However, challenges such as high costs, reliance on big data and privacy concerns limit its implementation. It is recommended to explore hybrid methods, optimize AI models and reduce data dependency to improve security and adoption of these technologies.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099
10.47796/ing.v7i00.1099
url https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099
identifier_str_mv 10.47796/ing.v7i00.1099
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099/984
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/1099/1055
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
dc.source.none.fl_str_mv INGENIERÍA INVESTIGA; Vol. 7 (2025): Ingeniería Investiga
INGENIERÍA INVESTIGA; Vol. 7 (2025): Ingeniería Investiga
2708-3039
10.47796/ing.v7i00
reponame:Revistas - Universidad Privada de Tacna
instname:Universidad Privada de Tacna
instacron:UPT
instname_str Universidad Privada de Tacna
instacron_str UPT
institution UPT
reponame_str Revistas - Universidad Privada de Tacna
collection Revistas - Universidad Privada de Tacna
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846791868168273920
score 12.80667
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).