Proposed equations for predicting body composition of male wistar rats
Descripción del Articulo
Introduction: Assessment of body composition is important as it allows splitting body weight in muscle weight, fat weight, bone weight and residual weight, both in humans and animals. Objectives: To validate somatic equations to predict a tri-compartment model of body composition (fat weight, fat fr...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2010 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/80 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/80 |
Nivel de acceso: | acceso abierto |
Materia: | Composición corporal peso corporal ratas wistar. Body composition body weight rats wistar. |
id |
REVUNMSM_c9e208f976397e38f067ed36336b85c7 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/80 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
dc.title.none.fl_str_mv |
Proposed equations for predicting body composition of male wistar rats Propuesta de ecuaciones para predecir la composición corporal de ratas machos wistar |
title |
Proposed equations for predicting body composition of male wistar rats |
spellingShingle |
Proposed equations for predicting body composition of male wistar rats Cossio-Bolaños, Marco Antonio Composición corporal peso corporal ratas wistar. Body composition body weight rats wistar. |
title_short |
Proposed equations for predicting body composition of male wistar rats |
title_full |
Proposed equations for predicting body composition of male wistar rats |
title_fullStr |
Proposed equations for predicting body composition of male wistar rats |
title_full_unstemmed |
Proposed equations for predicting body composition of male wistar rats |
title_sort |
Proposed equations for predicting body composition of male wistar rats |
dc.creator.none.fl_str_mv |
Cossio-Bolaños, Marco Antonio Gómez, Rossana Rojas, Julio Flores, Haroldo |
author |
Cossio-Bolaños, Marco Antonio |
author_facet |
Cossio-Bolaños, Marco Antonio Gómez, Rossana Rojas, Julio Flores, Haroldo |
author_role |
author |
author2 |
Gómez, Rossana Rojas, Julio Flores, Haroldo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Composición corporal peso corporal ratas wistar. Body composition body weight rats wistar. |
topic |
Composición corporal peso corporal ratas wistar. Body composition body weight rats wistar. |
description |
Introduction: Assessment of body composition is important as it allows splitting body weight in muscle weight, fat weight, bone weight and residual weight, both in humans and animals. Objectives: To validate somatic equations to predict a tri-compartment model of body composition (fat weight, fat free weight and residual weight) in male Wistar rats. Design: Descriptive transversal type study. Setting: Faculty of Biology, State University UNICAMP, Sao Paulo, Brazil. Biological material: Male Wistar rats. Methods: The study evaluated body weight (g) in 10 average age (X = 98.00 ± 10.40 days) male Wistar rats. They were sacrificed and splitting of fat weight (skin), fat free weight (muscle and bone) and residual weight (PR) (g) was done. Results were analyzed by arithmetic mean (X), standard deviation (SD) and Pearson product moment correlations (r) descriptive statistics. To predict components single and multiple regression statistics were applied, with weight body (g) and age (days) as independent variables. On the other hand, to verify agreement between in vitro method of dissection and regression equations Bland and Altman’s plotting were used. Main outcome measures: Somatic equations validation to predict rat’s corporal composition. Results: We observed high correlation coefficients (r) with body weight and age, which led to equations to allow prediction of the fat weight (PG=-31.6+(0.361*PT)-(0.345*age) (R2=0.73) and fat free weight (PLG=19.9+(0.453*PT)+(0.114*age) (R2=0.94). However, residual weight (PR) was obtained by mathematical deduction (PR = total weight -(PLG + PG)). Additionally, the Bland and Altman’s plotting allowed determining high concordance between the two procedures. Conclusion: Regression equations as doubly indirect method (three-compartment model) allow predicting 84 to 112 day-old male Wistar rats’ body composition. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/80 10.15381/anales.v71i2.80 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/80 |
identifier_str_mv |
10.15381/anales.v71i2.80 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/80/75 |
dc.rights.none.fl_str_mv |
Derechos de autor 2010 Marco Antonio Cossio-Bolaños, Rossana Gómez, Julio Rojas, Haroldo Flores https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2010 Marco Antonio Cossio-Bolaños, Rossana Gómez, Julio Rojas, Haroldo Flores https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Humana |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Humana |
dc.source.none.fl_str_mv |
Anales de la Facultad de Medicina; Vol. 71 No. 2 (2010); 97-102 Anales de la Facultad de Medicina; Vol. 71 Núm. 2 (2010); 97-102 1609-9419 1025-5583 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238239528812544 |
spelling |
Proposed equations for predicting body composition of male wistar ratsPropuesta de ecuaciones para predecir la composición corporal de ratas machos wistarCossio-Bolaños, Marco AntonioGómez, RossanaRojas, JulioFlores, HaroldoComposición corporalpeso corporalratas wistar.Body compositionbody weightratswistar.Introduction: Assessment of body composition is important as it allows splitting body weight in muscle weight, fat weight, bone weight and residual weight, both in humans and animals. Objectives: To validate somatic equations to predict a tri-compartment model of body composition (fat weight, fat free weight and residual weight) in male Wistar rats. Design: Descriptive transversal type study. Setting: Faculty of Biology, State University UNICAMP, Sao Paulo, Brazil. Biological material: Male Wistar rats. Methods: The study evaluated body weight (g) in 10 average age (X = 98.00 ± 10.40 days) male Wistar rats. They were sacrificed and splitting of fat weight (skin), fat free weight (muscle and bone) and residual weight (PR) (g) was done. Results were analyzed by arithmetic mean (X), standard deviation (SD) and Pearson product moment correlations (r) descriptive statistics. To predict components single and multiple regression statistics were applied, with weight body (g) and age (days) as independent variables. On the other hand, to verify agreement between in vitro method of dissection and regression equations Bland and Altman’s plotting were used. Main outcome measures: Somatic equations validation to predict rat’s corporal composition. Results: We observed high correlation coefficients (r) with body weight and age, which led to equations to allow prediction of the fat weight (PG=-31.6+(0.361*PT)-(0.345*age) (R2=0.73) and fat free weight (PLG=19.9+(0.453*PT)+(0.114*age) (R2=0.94). However, residual weight (PR) was obtained by mathematical deduction (PR = total weight -(PLG + PG)). Additionally, the Bland and Altman’s plotting allowed determining high concordance between the two procedures. Conclusion: Regression equations as doubly indirect method (three-compartment model) allow predicting 84 to 112 day-old male Wistar rats’ body composition.Introducción: La evaluación de la composición corporal es importante, porque permite conocer el fraccionamiento del peso corporal en peso muscular, peso graso, peso residual y peso óseo, tanto en humanos, como en animales. Objetivos: Validar ecuaciones somáticas para predecir la composición corporal de un modelo tri-compartimental (peso graso, peso libre de grasa y peso residual) de ratas machos wistar. Diseño: Estudio de tipo descriptivo de corte transversal. Institución: Facultad de Biología de la universidad estatal UNICAMP, Sao Paulo, Brasil. Material biológico: Ratas machos wistar. Métodos: Se estudió a 10 ratas machos wistar, con un promedio de edad de (X=98,00±10,40 días), se les evaluó el peso corporal (g). Enseguida fueron sacrificados y se procedió al fraccionamiento del peso graso (piel), peso libre de grasa (músculo y hueso) y peso residual (PR) (g). Los resultados fueron analizados por estadística descriptiva de media aritmética (X), desviación estándar (DE) y correlación producto momento de Pearson (r). Para predecir los componentes, se aplicó regresiones estadísticas simples y múltiples, a partir del peso corporal (g) y la edad (días) como variables independientes. Por otro lado, para verificar la concordancia entre el método directo de disección in vitro con las ecuaciones de regresión, se utilizó el plotaje de Bland y Altman. Principales medidas de resultados: Validación de ecuaciones somáticas para predecir la composición corporal de ratas. Resultados: Se verificó altos coeficientes de correlación (r) con el peso corporal y edad, los cuales dieron origen a ecuaciones que permitieron predecir el peso graso (PG = -31,6+(0,361*PT)-(0,345*edad) (R2=0,73) y peso libre de grasa (PLG = 19,9+(0,453*PT) + (0,114*edad) (R2=0,94). Sin embargo, el peso residual (PR) fue obtenido por medio de una deducción matemática (PR=peso total-(PLG+PG)). Así mismo, el plotaje de Bland y Altman permitió determinar alta concordancia entre ambos procedimientos. Conclusión: Las ecuaciones de regresión como método doblemente indirecto (modelo tri-compartimental) permiten predecir la composición corporal de ratas machos wistar en una fase etárea de 84 a 112 días de edad.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Humana2010-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/8010.15381/anales.v71i2.80Anales de la Facultad de Medicina; Vol. 71 No. 2 (2010); 97-102Anales de la Facultad de Medicina; Vol. 71 Núm. 2 (2010); 97-1021609-94191025-5583reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/anales/article/view/80/75Derechos de autor 2010 Marco Antonio Cossio-Bolaños, Rossana Gómez, Julio Rojas, Haroldo Floreshttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/802020-04-15T17:53:51Z |
score |
13.973999 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).