Credit scoring a tool to minimize the credit risk ok the micro-financial institutions-Peru

Descripción del Articulo

Objective: Develop a Credit Scoring model for the microcredit portfolio microcredits from a Municipal Banks in the city of Piura. Method: Binary Logistic Regression was applied as a technique to set out a model whose response or dependent variable is a discrete dichotomous variable. Results:&nbs...

Descripción completa

Detalles Bibliográficos
Autor: Quiroz Calderón, Milagro Baldemar
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/17697
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/quipu/article/view/17697
Nivel de acceso:acceso abierto
Materia:Risk
credit
microfinance
technology
market
Riesgo
crédito
microfinanzas
tecnología
mercado
Descripción
Sumario:Objective: Develop a Credit Scoring model for the microcredit portfolio microcredits from a Municipal Banks in the city of Piura. Method: Binary Logistic Regression was applied as a technique to set out a model whose response or dependent variable is a discrete dichotomous variable. Results: The treatment of the database of the microcredit portfolio of the Municipal Banks of the city of Piura, using the binary logistic regression module of the SPSS software version 24, was obtained as a result the probability of default. Conclusions: it achieved a statistical rating model capable to correctly predict the 96.7% of the credits of portfolio of the municipal bank.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).