Basics for Forecasting a Stationary Time Series Using Information from Its Past

Descripción del Articulo

Since market behavior is volatile, this research intends to help investors and business organizations make forecasts with certainty and, as a consequence, with the least possible error in order to succeed in the management of their projects and operations. Elements such as inflation rate, exchange r...

Descripción completa

Detalles Bibliográficos
Autor: Bazán Ramírez, Wilfredo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
inglés
OAI Identifier:oai:ojs.csi.unmsm:article/16504
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/16504
Nivel de acceso:acceso abierto
Materia:time series
stationarity
unit root
white noise
variance
series de tiempo
estacionariedad
raíz unitaria
ruido blanco
varianza
Descripción
Sumario:Since market behavior is volatile, this research intends to help investors and business organizations make forecasts with certainty and, as a consequence, with the least possible error in order to succeed in the management of their projects and operations. Elements such as inflation rate, exchange rate, stock prices, economic and financial results, sales, among other variables, are causes of concern for investors. Due to their data structure, these financial instruments correspond to time series, which take values or realizations along time and are spaced over time. The previous behavior of the series is used to forecast its value, return and volatility. It must be taken into consideration that forecasting using traditional techniques might result in imprecisions, so it is necessary to forecast using econometric models because of their robustness and precision. These are also known as univariate time series models.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).