APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
Descripción del Articulo
Distributed data mining is contemplated in the field of research and involves the application of the process of extracting knowledge about large volumes of information stored in distributed databases. Modern organizations require tools that perform tasks of prediction, forecasting, classification an...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/13949 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949 |
Nivel de acceso: | acceso abierto |
Materia: | Distributed Data Mining Clustering Algorithm K-means Petition Minería de Datos Distribuida Algoritmo Clustering petitorio |
id |
REVUNMSM_8c4c252bb869d43ef41ac5c0519e6738 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/13949 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
spelling |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATIONMinerٕía de datos distribuida usando clustering k-means en la predictibilidad del proceso petitorio en una organización públicaMamani Rodríguez, ZoraidaDel Pino Rodríguez, LuzCortez Vasquez, AugustoDistributed Data MiningClustering AlgorithmK-meansPetitionMinería de Datos DistribuidaAlgoritmo ClusteringK-meanspetitorioDistributed data mining is contemplated in the field of research and involves the application of the process of extracting knowledge about large volumes of information stored in distributed databases. Modern organizations require tools that perform tasks of prediction, forecasting, classification and others, online, on their databases that are located in different nodes interconnected through the Internet, in a way that allows them to improve the quality of their services. Clustering is one of the main modeling techniques of data mining which consists of dividing the information into different groups, internally the members of each group are very similar to each other and dissimilar to the members of the other groups. The resulting clusters or clusters allow us to predict patterns of behavior that can contribute to organizational decision-making. It is in this context that the present work elaborates a proposal of a prototype of application of distributed data mining based on the k-means technique in the predictibilidad of the request process of a public organization.La minería de datos distribuida está contemplada en el campo de la investigación e implica la aplicación del proceso de extracción de conocimiento sobre grandes volúmenes de información almacenados en bases de datos distribuidas. Las organizaciones modernas requieren de herramientas que realicen tareas de predicción, pronósticos, clasificación entre otros y en línea, sobre sus bases de datos que se ubican en diferentes nodos interconectados a través de internet, de manera que les permita mejorar la calidad de sus servicios. El Clustering es una de las principales tecnicas de modelado de la mineria de datos la cual consiste en dividir la información en grupos diferentes, internamente los miembros de cada grupo son muy similares unos de otros y disimiles respecto a los miembos de los otros grupos. Los grupos o clusters resultantes permiten predecir patrones de comportamiento que pueden aportar en la toma de decisiones de las organizaciones. Es en este contexto que el presente trabajo elabora una propuesta de un prototipo de aplicación de minería de datos distribuida basado en la técnica k-means en la predictibilidad del proceso petitorio de una organizacion pública.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2017-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/1394910.15381/idata.v20i2.13949Industrial Data; Vol. 20 No. 2 (2017); 123-130Industrial Data; Vol. 20 Núm. 2 (2017); 123-1301810-99931560-9146reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949/12313Derechos de autor 2017 Zoraida Mamani Rodríguezhttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/139492021-07-14T10:00:13Z |
dc.title.none.fl_str_mv |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION Minerٕía de datos distribuida usando clustering k-means en la predictibilidad del proceso petitorio en una organización pública |
title |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION |
spellingShingle |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION Mamani Rodríguez, Zoraida Distributed Data Mining Clustering Algorithm K-means Petition Minería de Datos Distribuida Algoritmo Clustering K-means petitorio |
title_short |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION |
title_full |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION |
title_fullStr |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION |
title_full_unstemmed |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION |
title_sort |
APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION |
dc.creator.none.fl_str_mv |
Mamani Rodríguez, Zoraida Del Pino Rodríguez, Luz Cortez Vasquez, Augusto |
author |
Mamani Rodríguez, Zoraida |
author_facet |
Mamani Rodríguez, Zoraida Del Pino Rodríguez, Luz Cortez Vasquez, Augusto |
author_role |
author |
author2 |
Del Pino Rodríguez, Luz Cortez Vasquez, Augusto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Distributed Data Mining Clustering Algorithm K-means Petition Minería de Datos Distribuida Algoritmo Clustering K-means petitorio |
topic |
Distributed Data Mining Clustering Algorithm K-means Petition Minería de Datos Distribuida Algoritmo Clustering K-means petitorio |
description |
Distributed data mining is contemplated in the field of research and involves the application of the process of extracting knowledge about large volumes of information stored in distributed databases. Modern organizations require tools that perform tasks of prediction, forecasting, classification and others, online, on their databases that are located in different nodes interconnected through the Internet, in a way that allows them to improve the quality of their services. Clustering is one of the main modeling techniques of data mining which consists of dividing the information into different groups, internally the members of each group are very similar to each other and dissimilar to the members of the other groups. The resulting clusters or clusters allow us to predict patterns of behavior that can contribute to organizational decision-making. It is in this context that the present work elaborates a proposal of a prototype of application of distributed data mining based on the k-means technique in the predictibilidad of the request process of a public organization. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949 10.15381/idata.v20i2.13949 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949 |
identifier_str_mv |
10.15381/idata.v20i2.13949 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949/12313 |
dc.rights.none.fl_str_mv |
Derechos de autor 2017 Zoraida Mamani Rodríguez https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2017 Zoraida Mamani Rodríguez https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Industrial Data; Vol. 20 No. 2 (2017); 123-130 Industrial Data; Vol. 20 Núm. 2 (2017); 123-130 1810-9993 1560-9146 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238303253921792 |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).