APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION

Descripción del Articulo

Distributed data mining is contemplated in the field of research and involves the application of the process of extracting knowledge about large volumes of information stored in distributed databases. Modern organizations require tools that perform tasks of prediction, forecasting, classification an...

Descripción completa

Detalles Bibliográficos
Autores: Mamani Rodríguez, Zoraida, Del Pino Rodríguez, Luz, Cortez Vasquez, Augusto
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/13949
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949
Nivel de acceso:acceso abierto
Materia:Distributed Data Mining
Clustering Algorithm
K-means
Petition
Minería de Datos Distribuida
Algoritmo Clustering
petitorio
id REVUNMSM_8c4c252bb869d43ef41ac5c0519e6738
oai_identifier_str oai:ojs.csi.unmsm:article/13949
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATIONMinerٕía de datos distribuida usando clustering k-means en la predictibilidad del proceso petitorio en una organización públicaMamani Rodríguez, ZoraidaDel Pino Rodríguez, LuzCortez Vasquez, AugustoDistributed Data MiningClustering AlgorithmK-meansPetitionMinería de Datos DistribuidaAlgoritmo ClusteringK-meanspetitorioDistributed data mining is contemplated in the field of research and involves the application of the process of extracting knowledge about large volumes of information stored in distributed databases. Modern organizations require tools that perform tasks of prediction, forecasting, classification and others, online, on their databases that are located in different nodes interconnected through the Internet, in a way that allows them to improve the quality of their services. Clustering is one of the main modeling techniques of data mining which consists of dividing the information into different groups, internally the members of each group are very similar to each other and dissimilar to the members of the other groups. The resulting clusters or clusters allow us to predict patterns of behavior that can contribute to organizational decision-making. It is in this context that the present work elaborates a proposal of a prototype of application of distributed data mining based on the k-means technique in the predictibilidad of the request process of a public organization.La minería de datos distribuida está contemplada en el campo de la investigación e implica la aplicación del proceso de extracción de conocimiento sobre grandes volúmenes de información almacenados en bases de datos distribuidas. Las organizaciones modernas requieren de herramientas que realicen tareas de predicción, pronósticos, clasificación entre otros y en línea, sobre sus bases de datos que se ubican en diferentes nodos interconectados a través de internet, de manera que les permita mejorar la calidad de sus servicios. El Clustering es una de las principales tecnicas de modelado de la mineria de datos la cual consiste en dividir la información en grupos diferentes, internamente los miembros de cada grupo son muy similares unos de otros y disimiles respecto a los miembos de los otros grupos. Los grupos o clusters resultantes permiten predecir patrones de comportamiento que pueden aportar en la toma de decisiones de las organizaciones. Es en este contexto que el presente trabajo elabora una propuesta de un prototipo de aplicación de minería de datos distribuida basado en la técnica k-means en la predictibilidad del proceso petitorio de una organizacion pública.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2017-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/1394910.15381/idata.v20i2.13949Industrial Data; Vol. 20 No. 2 (2017); 123-130Industrial Data; Vol. 20 Núm. 2 (2017); 123-1301810-99931560-9146reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949/12313Derechos de autor 2017 Zoraida Mamani Rodríguezhttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/139492021-07-14T10:00:13Z
dc.title.none.fl_str_mv APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
Minerٕía de datos distribuida usando clustering k-means en la predictibilidad del proceso petitorio en una organización pública
title APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
spellingShingle APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
Mamani Rodríguez, Zoraida
Distributed Data Mining
Clustering Algorithm
K-means
Petition
Minería de Datos Distribuida
Algoritmo Clustering
K-means
petitorio
title_short APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
title_full APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
title_fullStr APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
title_full_unstemmed APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
title_sort APPLICATION OF THE DISTRIBUTED DATA MINING USING CLUSTERING K-MEANS IN THE PREDICTABILITY OF THE REQUEST PROCESS OF A PUBLIC ORGANIZATION
dc.creator.none.fl_str_mv Mamani Rodríguez, Zoraida
Del Pino Rodríguez, Luz
Cortez Vasquez, Augusto
author Mamani Rodríguez, Zoraida
author_facet Mamani Rodríguez, Zoraida
Del Pino Rodríguez, Luz
Cortez Vasquez, Augusto
author_role author
author2 Del Pino Rodríguez, Luz
Cortez Vasquez, Augusto
author2_role author
author
dc.subject.none.fl_str_mv Distributed Data Mining
Clustering Algorithm
K-means
Petition
Minería de Datos Distribuida
Algoritmo Clustering
K-means
petitorio
topic Distributed Data Mining
Clustering Algorithm
K-means
Petition
Minería de Datos Distribuida
Algoritmo Clustering
K-means
petitorio
description Distributed data mining is contemplated in the field of research and involves the application of the process of extracting knowledge about large volumes of information stored in distributed databases. Modern organizations require tools that perform tasks of prediction, forecasting, classification and others, online, on their databases that are located in different nodes interconnected through the Internet, in a way that allows them to improve the quality of their services. Clustering is one of the main modeling techniques of data mining which consists of dividing the information into different groups, internally the members of each group are very similar to each other and dissimilar to the members of the other groups. The resulting clusters or clusters allow us to predict patterns of behavior that can contribute to organizational decision-making. It is in this context that the present work elaborates a proposal of a prototype of application of distributed data mining based on the k-means technique in the predictibilidad of the request process of a public organization.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949
10.15381/idata.v20i2.13949
url https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949
identifier_str_mv 10.15381/idata.v20i2.13949
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/13949/12313
dc.rights.none.fl_str_mv Derechos de autor 2017 Zoraida Mamani Rodríguez
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 Zoraida Mamani Rodríguez
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Industrial Data; Vol. 20 No. 2 (2017); 123-130
Industrial Data; Vol. 20 Núm. 2 (2017); 123-130
1810-9993
1560-9146
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238303253921792
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).