Content-Based Recommendation System for Programming Judges using Natural Language Processing and Deep Learning

Descripción del Articulo

In the field of education and technology companies, online judges play an important role in the development of programming skills because on these platforms students must solve challenges using specific programming languages. However, the sheer number of coding challenges available can be overwhelmi...

Descripción completa

Detalles Bibliográficos
Autores: Julca-Mejia, Wilson, Paucar-Curasma, Herminio
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/25802
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/25802
Nivel de acceso:acceso abierto
Materia:Programming Online Judges
Recommender Systems
Natural Language Processing
Deep Learning
Jueces de Programación en línea
Sistemas de Recomendación
Procesamiento de Lenguaje Natural
Aprendizaje Profundo
Descripción
Sumario:In the field of education and technology companies, online judges play an important role in the development of programming skills because on these platforms students must solve challenges using specific programming languages. However, the sheer number of coding challenges available can be overwhelming for students, leading to frustration and loss of interest. To resolve this situation, recommender systems can be an effective solution. However, programming judges have not delved far enough into this area. Therefore, this research focused on evaluating six artificial intelligence techniques through a cloud-based architecture for the prediction of the level of difficulty from the statements of the problems to be coupled to a recommendation system. To validate the experiments, a real CodeChef programming judge was used and the experiments were evaluated through statistical tests. The results indicated that the BERT model is the best for predicting the level of the problems, which helps the recommendation system to improve the learning experience of the students in the online programming judges.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).