Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.

Descripción del Articulo

Lake Titicaca, at present, is considered a natural wonder of the world. It is the habitat of many unique and endangered native species, with flora and fauna of great diversity, site of nesting of many migratory birds, source of fresh filtered water, by its volume, regulates the air temperature of th...

Descripción completa

Detalles Bibliográficos
Autor: Aguirre, César
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/14709
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/14709
Nivel de acceso:acceso abierto
Materia:Ondas barotrópicas
baroclínicas
difusión
tiempo de residencia
Barotropic waves
baroclinic
diffusion
residence time
id REVUNMSM_6273b62e05fce91139411fb1f53dbda2
oai_identifier_str oai:ojs.csi.unmsm:article/14709
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
dc.title.none.fl_str_mv Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
Procesos físicos que controlan el intercambio de agua entre la Bahía de Puno y la Cuenca Principal del Lago Titicaca, en el Perú
title Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
spellingShingle Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
Aguirre, César
Ondas barotrópicas
baroclínicas
difusión
tiempo de residencia
Barotropic waves
baroclinic
diffusion
residence time
title_short Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
title_full Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
title_fullStr Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
title_full_unstemmed Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
title_sort Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.
dc.creator.none.fl_str_mv Aguirre, César
author Aguirre, César
author_facet Aguirre, César
author_role author
dc.subject.none.fl_str_mv Ondas barotrópicas
baroclínicas
difusión
tiempo de residencia
Barotropic waves
baroclinic
diffusion
residence time
topic Ondas barotrópicas
baroclínicas
difusión
tiempo de residencia
Barotropic waves
baroclinic
diffusion
residence time
description Lake Titicaca, at present, is considered a natural wonder of the world. It is the habitat of many unique and endangered native species, with flora and fauna of great diversity, site of nesting of many migratory birds, source of fresh filtered water, by its volume, regulates the air temperature of the region allowing climate conditions less aggressive for life. However, in the last decades, the anthropogenic influence affected its conservation. The problems that Lake Titicaca presents are concentrated in the littoral zone, the bays and the Lake Minor. Large quantities of wastewater that enter directly or poorly treated, in particular to the Bays of Puno and Copacabana, are generating eutrophication processes. The effect of the discharges are the increase of sediments accumulated in the bottom, explosive flowering of Lemna sp. algae on the surface, reduction in dissolved oxygen levels, and decrease in water quality. However, pollution processes cannot be understood only in terms of the organic matter load that they receive, since they are well coupled to a wide range of physical processes that will link the dynamics between the littoral zone and the main basin. It has been shown in large lakes, which move nutrients, heat, organic carbon, and other tracers through isobars, from the edge of the lake to the inner shelf, and vice-versa. These physical processes largely determine the average time in which pollutants remain in areas near the coast and, therefore, it is necessary to estimate their concentration and the level of variability in the coastal zone. In regions with strong exchange, nutrient flows through the coastal zone still appear to be dominated by large water intakes, and there is little evidence of anthropogenic disturbance. In areas of restricted exchange, in turn, there is strong evidence of human impact, in terms of the amount of phytoplankton and relative abundance of species, or deep areas of the lake where oxygen decreases. The coastal zone of Lake Titicaca, and in particular, the Interior Bay of Puno, is a paradigmatic example of pollution caused by human action without control over the environment close to the coast. The Interior Bay is linked to the Outer Bay of Puno by two channels and a region with a lot of totora that generates restrictions to the exchange. Unfortunately, little is known about the type of exchange or the physical processes that control the ow of substances between the Bay of Puno and the main body of the lake. This is also the case of many bays in lakes around the world, in which the exchange processes remain largely unexplored. Therefore, there is an urgent need to understand the physical processes that control the exchange between coastal and pelagic zone, this would allow bettering treating water quality problems in coastal areas. Our objective is to understand the physical mechanisms that intervene in the exchange of water and substances between coastal and pelagic zones in large tropical lakes. We use the Bay of Puno and the Big Lake, as an example of the case. We estimate the flow of exit or entry through the mouth of the Bay of Puno, due to three physical processes that we consider of greater importance that would be responsible for the flow of water and substances. In particular, attention is paid to horizontal exchange driven by barotropic waves, baroclinics and diffusion processes, issues that are currently not explored. To fulfill this objective, a combination of scale arguments is used, based on existing field data that appeared mainly in scientic and professional reports, and simulations that were carried out with a three-dimensional hydrodynamic transport model and, originally developed by the Geological Survey Service. United States, at the University of California, Davis, USA, expanded and adapted at the University of Granada to run in parallel architectures. The exchange rates and residence time of the Bay of Puno were estimated, as well as the diusion rate for a substance, between the Big Lake and the Bay of Puno. Keywords: Barotropic waves, baroclinic, diusion, residence time.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/14709
10.15381/rif.v20i1.14709
url https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/14709
identifier_str_mv 10.15381/rif.v20i1.14709
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/14709/12920
dc.rights.none.fl_str_mv Derechos de autor 2017 César Aguirre
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 César Aguirre
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Revista de Investigación de Física; Vol. 20 No. 1 (2017); 1-8
Revista de Investigación de Física; Vol. 20 Núm. 1 (2017); 1-8
1728-2977
1605-7724
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238318982561792
spelling Physical processes controlling the exchange of water between the Puno Bay and the Main Basin of Lake Titicaca, in Peru.Procesos físicos que controlan el intercambio de agua entre la Bahía de Puno y la Cuenca Principal del Lago Titicaca, en el PerúAguirre, CésarOndas barotrópicasbaroclínicasdifusióntiempo de residenciaBarotropic wavesbaroclinicdiffusionresidence timeLake Titicaca, at present, is considered a natural wonder of the world. It is the habitat of many unique and endangered native species, with flora and fauna of great diversity, site of nesting of many migratory birds, source of fresh filtered water, by its volume, regulates the air temperature of the region allowing climate conditions less aggressive for life. However, in the last decades, the anthropogenic influence affected its conservation. The problems that Lake Titicaca presents are concentrated in the littoral zone, the bays and the Lake Minor. Large quantities of wastewater that enter directly or poorly treated, in particular to the Bays of Puno and Copacabana, are generating eutrophication processes. The effect of the discharges are the increase of sediments accumulated in the bottom, explosive flowering of Lemna sp. algae on the surface, reduction in dissolved oxygen levels, and decrease in water quality. However, pollution processes cannot be understood only in terms of the organic matter load that they receive, since they are well coupled to a wide range of physical processes that will link the dynamics between the littoral zone and the main basin. It has been shown in large lakes, which move nutrients, heat, organic carbon, and other tracers through isobars, from the edge of the lake to the inner shelf, and vice-versa. These physical processes largely determine the average time in which pollutants remain in areas near the coast and, therefore, it is necessary to estimate their concentration and the level of variability in the coastal zone. In regions with strong exchange, nutrient flows through the coastal zone still appear to be dominated by large water intakes, and there is little evidence of anthropogenic disturbance. In areas of restricted exchange, in turn, there is strong evidence of human impact, in terms of the amount of phytoplankton and relative abundance of species, or deep areas of the lake where oxygen decreases. The coastal zone of Lake Titicaca, and in particular, the Interior Bay of Puno, is a paradigmatic example of pollution caused by human action without control over the environment close to the coast. The Interior Bay is linked to the Outer Bay of Puno by two channels and a region with a lot of totora that generates restrictions to the exchange. Unfortunately, little is known about the type of exchange or the physical processes that control the ow of substances between the Bay of Puno and the main body of the lake. This is also the case of many bays in lakes around the world, in which the exchange processes remain largely unexplored. Therefore, there is an urgent need to understand the physical processes that control the exchange between coastal and pelagic zone, this would allow bettering treating water quality problems in coastal areas. Our objective is to understand the physical mechanisms that intervene in the exchange of water and substances between coastal and pelagic zones in large tropical lakes. We use the Bay of Puno and the Big Lake, as an example of the case. We estimate the flow of exit or entry through the mouth of the Bay of Puno, due to three physical processes that we consider of greater importance that would be responsible for the flow of water and substances. In particular, attention is paid to horizontal exchange driven by barotropic waves, baroclinics and diffusion processes, issues that are currently not explored. To fulfill this objective, a combination of scale arguments is used, based on existing field data that appeared mainly in scientic and professional reports, and simulations that were carried out with a three-dimensional hydrodynamic transport model and, originally developed by the Geological Survey Service. United States, at the University of California, Davis, USA, expanded and adapted at the University of Granada to run in parallel architectures. The exchange rates and residence time of the Bay of Puno were estimated, as well as the diusion rate for a substance, between the Big Lake and the Bay of Puno. Keywords: Barotropic waves, baroclinic, diusion, residence time.El Lago Titicaca, en la actualidad, es considerado una maravilla natural del mundo. Es el habitad de muchas especies nativas únicas y en extinción, con flora y fauna de gran diversidad, sitio de anidamiento de muchas aves migratorias, fuente de agua dulce filtrada, por su volumen, regula la temperatura del aire de la región permitiendo condiciones del clima menos agresivas para la vida. Sin embargo en las últimas décadas, la influencia antropogénica afectó su conservación. Los problemas que presenta el Lago Titicaca, están concentradas en la zona litoral, las bahías y el Lago Menor. Grandes cantidades de agua residuales que ingresan directamente o deficientemente tratadas, en particular a las Bahías de Puno y Copacabana, están generando procesos de eutrofización. El efecto de las descargas son el incremento de sedimentos acumulados en el fondo, floración explosiva de algas Lemna sp. en la superficie, reducción en los niveles de oxígeno disuelto, y disminución de la calidad del agua. Sin embargo, los procesos de contaminación no pueden entenderse solo en función de la carga de materia orgánica que recibe, ya que están bien acoplados a una amplia gama de procesos físicos que van a vincular la dinámica entre la zona litoral y la cuenca principal. Se ha demostrado en grandes lagos, que mueven nutrientes, calor, carbono orgánico, y otros trazadores a través de isóbaras, desde el borde del lago a la plataforma interna, y viceversa. Estos procesos físicos determinan en gran medida el tiempo promedio en que los contaminantes permanecen en las zonas cercanas a la costa y, por tanto, es necesario estimar su concentración y el nivel de variabilidad en la zona costera. En regiones con fuerte intercambio, los flujos de nutrientes a través de la zona costera parecen estar todavía dominados por grandes entradas de agua, y hay poca evidencia de perturbaciones antropogénicas. En zonas de intercambio restringido, a su vez, existen fuertes evidencias del impacto humano, en términos de cantidad de toplancton y abundancia relativa de especies, o zonas profundas del lago donde el oxígeno disminuye. La zona costera del lago Titicaca, y en particular, la bahía interior de Puno, es un ejemplo paradigmático de contaminación causada por la acción humana sin control sobre el entorno cercano a la costa. La Bahía Interior está unido a la Bahía Exterior de Puno por dos canales y una región con mucha totora que genera restricciones al intercambio. Desafortunadamente, poco se sabe sobre el tipo de intercambio o de los procesos físicos que controlan los flujos de sustancias entre la bahía de Puno y el cuerpo principal del lago. Este, también es el caso de muchas bahías en lagos de todo el mundo, en el que los procesos de intercambio se mantienen en gran parte inexplorados. Por lo tanto, existe una necesidad urgente de comprender los procesos físicos que controlan el intercambio entre zona litoral y pelágico, esto permitiría tratar mejor los problemas de calidad del agua en las zonas costeras. Nuestro objetivo es entender los mecanismos físicos que intervienen en el intercambio de agua y sustancias entre zona litoral y pelágica en grandes lagos tropicales. Utilizamos la bahía de Puno y el lago Grande, como un ejemplo del caso. Estimamos el caudal de salida o entrada a través de la boca de la Bahía de Puno, debido a tres procesos físicos que consideramos de mayor importancia que serían los responsables del flujo de agua y sustancias. En particular, se presta atención al intercambio horizontal impulsado por ondas barotrópicas, baroclínicas y procesos de difusión, temas que en la actualidad siguen sin explorarse. Para cumplir con este objetivo se utiliza una combinación de argumentos de escala, basados en datos de campo existentes que apareció principalmente en informes científicos y profesionales, y simulaciones que se realizaron con un modelo de transporte hidrodinámico tridimensional y, originalmente desarrollado por el Servicio Geológico de Estados Unidos, en la Universidad de California, Davis, USA, ampliado y adaptado en la Universidad de Granada para ejecutarse en arquitecturas paralelas. Se estimó los caudales de intercambio y tiempo de residencia de la Bahía de Puno, así como la tasa de difusión para una sustancia, entre el Lago Grande y la Bahía de Puno.Universidad Nacional Mayor de San Marcos2017-10-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/1470910.15381/rif.v20i1.14709Revista de Investigación de Física; Vol. 20 No. 1 (2017); 1-8Revista de Investigación de Física; Vol. 20 Núm. 1 (2017); 1-81728-29771605-7724reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/14709/12920Derechos de autor 2017 César Aguirrehttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/147092021-08-17T20:24:34Z
score 13.913218
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).