Sistemas Recomendadores: Un enfoque desde los algoritmos genéticos
Descripción del Articulo
El presente trabajo abarca un enfoque alternativo, desde los algoritmos evolutivos, a la manera tradicional en que se abordan los sistemas recomendadores (SR de aquí en adelante). Se examinan las posibilidades de los algoritmos genéticos para brindar características adaptativas a estos sistemas. Nue...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2006 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
| Lenguaje: | español |
| OAI Identifier: | oai:revistasinvestigacion.unmsm.edu.pe:article/5743 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/5743 |
| Nivel de acceso: | acceso abierto |
| Materia: | Collaborative information filtering machine learning evolutionary algorithms adaptive user interfaces. Filtrado colaborativo de la información aprendizaje automático algoritmos evolutivos interfaces de usuario adaptativas. |
| Sumario: | El presente trabajo abarca un enfoque alternativo, desde los algoritmos evolutivos, a la manera tradicional en que se abordan los sistemas recomendadores (SR de aquí en adelante). Se examinan las posibilidades de los algoritmos genéticos para brindar características adaptativas a estos sistemas. Nuestro objetivo, además de proporcionar una panorámica informativa general sobre las posibilidades y potencialidades de los SR, es proveer mecanismos para que los SR sean capaces de aprender características personales desde los usuarios, con miras a mejorar la efectividad a la hora de encontrar recomendaciones y sugerencias apropiadas para un individuo en particular. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).