Modelo de Clasificación de clientes morosos de una empresa de telefonía empleando Xgboost y Ligthgbm, Lima 2023

Descripción del Articulo

The objective was to compare the classification of delinquent customers of a telephone company in Lima in 2022 using XGBoost and LightGBM. The research adopts a quantitative approach using statistical tools to analyze factors influencing postpaid customer delinquency. The research is explanatory in...

Descripción completa

Detalles Bibliográficos
Autores: Gargate Obregón, Samuel Gustavo, Ponce Aruneri, Mar´ıa Estela
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:revistasinvestigacion.unmsm.edu.pe:article/32268
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/32268
Nivel de acceso:acceso abierto
Materia:Clasificación
XGBoost
LightGBM
Clientes morosos
Empresa de telefonía celular
Multiple correspondence analysis
municipal district management level
conservation of green areas in public spaces
Descripción
Sumario:The objective was to compare the classification of delinquent customers of a telephone company in Lima in 2022 using XGBoost and LightGBM. The research adopts a quantitative approach using statistical tools to analyze factors influencing postpaid customer delinquency. The research is explanatory in scope, employing statistical techniques to identify influential factors, as well as optimizing the classification through machine learning algorithms and neural networks. The design is non-experimental and cross-sectional, using a telephone company’s customer database. The study population includes postpaid customers meeting certain inclusion criteria, identifying 22,510 customers who meet the requirements. Among the results, XGBoost was found to have an accuracy of 0.68, slightly better than LightGBM (0.67). XGBoost excels in delinquency indicators compared to LightGBM, where the F1-Score indicator offers a more balanced measure of performance: XGBoost scores 0.2592 versus LightGBM’s 0.1443.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).