Neural networks with radial basis applied to the improve of quality

Descripción del Articulo

This research has led to construct an artificial neural network ARN with Radial Basis Function, and using Mahalanobis distance RND, for improving the quality of process design, which have performed better than those obtained with the for traditional statistical analysis of design of experiments and...

Descripción completa

Detalles Bibliográficos
Autor: Cevallos Ampuero, Juan
Formato: artículo
Fecha de Publicación:2008
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/6052
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052
Nivel de acceso:acceso abierto
Materia:Neural networks with radial basis
Radial basis functions
Neural networks of exact design
Multilayer perceptron with backpropagation learning.
Redes neuronales de base radial
Funciones de base radial
Redes neuronales de diseño exacto
Perceptrón multicapa con aprendizaje backpropagation
id REVUNMSM_0edb1377e7578d68422b510af9c187b7
oai_identifier_str oai:ojs.csi.unmsm:article/6052
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling Neural networks with radial basis applied to the improve of qualityRedes Neuronales de Base Radial aplicadas a la mejora de la calidadCevallos Ampuero, JuanNeural networks with radial basisRadial basis functionsNeural networks of exact designMultilayer perceptron with backpropagation learning.Redes neuronales de base radialFunciones de base radialRedes neuronales de diseño exactoPerceptrón multicapa con aprendizaje backpropagationThis research has led to construct an artificial neural network ARN with Radial Basis Function, and using Mahalanobis distance RND, for improving the quality of process design, which have performed better than those obtained with the for traditional statistical analysis of design of experiments and other RNA that already exist, for cases that are working with several independent and dependent variables in which its relations are not linear. It also allows with the RND obtain input parameters to achieve a desired level of quality, for it applies a methodology that uses RNAReverse and Direct at once.Esta investigación ha permitido construir una Red Neuronal Artificial RNA con Función de Base Radial, y que utiliza la distancia de Mahalanobis RND, para la mejora de la calidad de diseño de procesos, obteniendo mejores resultados que los obtenidos con los análisis estadísticos tradicionales para los diseños experimentales y las RNA ya existentes, para los casos que se trabaje con varias variables dependientes e independientes y en los que sus relaciones no sean lineales. Asimismo, al RND permite obtener parámetros de entrada para lograr un nivel de calidad deseado; para ello se aplica una metodología que usa las RNA Inversa y Directa a la vez.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2008-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/605210.15381/idata.v11i2.6052Industrial Data; Vol. 11 No. 2 (2008); 063-072Industrial Data; Vol. 11 Núm. 2 (2008); 063-0721810-99931560-9146reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052/5243Derechos de autor 2008 Juan Cevallos Ampuerohttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/60522020-06-13T18:18:56Z
dc.title.none.fl_str_mv Neural networks with radial basis applied to the improve of quality
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad
title Neural networks with radial basis applied to the improve of quality
spellingShingle Neural networks with radial basis applied to the improve of quality
Cevallos Ampuero, Juan
Neural networks with radial basis
Radial basis functions
Neural networks of exact design
Multilayer perceptron with backpropagation learning.
Redes neuronales de base radial
Funciones de base radial
Redes neuronales de diseño exacto
Perceptrón multicapa con aprendizaje backpropagation
title_short Neural networks with radial basis applied to the improve of quality
title_full Neural networks with radial basis applied to the improve of quality
title_fullStr Neural networks with radial basis applied to the improve of quality
title_full_unstemmed Neural networks with radial basis applied to the improve of quality
title_sort Neural networks with radial basis applied to the improve of quality
dc.creator.none.fl_str_mv Cevallos Ampuero, Juan
author Cevallos Ampuero, Juan
author_facet Cevallos Ampuero, Juan
author_role author
dc.subject.none.fl_str_mv Neural networks with radial basis
Radial basis functions
Neural networks of exact design
Multilayer perceptron with backpropagation learning.
Redes neuronales de base radial
Funciones de base radial
Redes neuronales de diseño exacto
Perceptrón multicapa con aprendizaje backpropagation
topic Neural networks with radial basis
Radial basis functions
Neural networks of exact design
Multilayer perceptron with backpropagation learning.
Redes neuronales de base radial
Funciones de base radial
Redes neuronales de diseño exacto
Perceptrón multicapa con aprendizaje backpropagation
description This research has led to construct an artificial neural network ARN with Radial Basis Function, and using Mahalanobis distance RND, for improving the quality of process design, which have performed better than those obtained with the for traditional statistical analysis of design of experiments and other RNA that already exist, for cases that are working with several independent and dependent variables in which its relations are not linear. It also allows with the RND obtain input parameters to achieve a desired level of quality, for it applies a methodology that uses RNAReverse and Direct at once.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052
10.15381/idata.v11i2.6052
url https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052
identifier_str_mv 10.15381/idata.v11i2.6052
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052/5243
dc.rights.none.fl_str_mv Derechos de autor 2008 Juan Cevallos Ampuero
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2008 Juan Cevallos Ampuero
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Industrial Data; Vol. 11 No. 2 (2008); 063-072
Industrial Data; Vol. 11 Núm. 2 (2008); 063-072
1810-9993
1560-9146
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238299267235840
score 13.90587
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).