Design of a neurocontroller and its application to time control of a prototype identified system using graphical programming

Descripción del Articulo

The design of a control system in certain processes in the industry is the main problem for engineers. Since the input and output data of a certain process are obtained, we can know the response of the system, the same that allows us to study a model prototype and using the theory of nonlinear contr...

Descripción completa

Detalles Bibliográficos
Autores: Rodríguez Bustinza, Ricardo, Garcés Yapuchura, Hernán, Cuaresma Villarroel, Julio
Formato: artículo
Fecha de Publicación:2008
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/356
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/356
Nivel de acceso:acceso abierto
Materia:Planta física
Adquisición de datos
Neurocontrolador
Diseño e implementación
Physical plant
Data acquisition
Neurocontroller
Design and implementation
Descripción
Sumario:The design of a control system in certain processes in the industry is the main problem for engineers. Since the input and output data of a certain process are obtained, we can know the response of the system, the same that allows us to study a model prototype and using the theory of nonlinear control the limit cycles are predicted, we can propose a function descriptive whose parameters will be necessary to implement the Neurocontroller that will be trained with the Back propagation algorithm. In our case, we address the design and implementation of a Neurocontroller in the LabVIEW graphical program environment under the supervision of the Simulation Toolkit. Our application is the control of a prototype physical system whose model can represent first and second order systems. The model of the process dynamics was obtained experimentally, for which the identification of parameters was applied using the curve fitting method by linear interpolation in the frequency domain. The accuracy of the model has been essential for the analysis of the descriptive function and consequently the adaptation of a neural model. The experimental results demonstrate that the designed control signal can make the output of the prototype system efficiently follow the imposed references with minimal overshoot and null steady-state error.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).