Binary regression model with misclassification and Berkson-type measurement error with student-t distribution

Descripción del Articulo

In this article, we introduce a regression model tailored for fitting binary data affected by misclassification in the response variable and Berkson-type measurement error in the covariate. The conventional assumption of a normal distribution for measurement error may inadequately represent atypical...

Descripción completa

Detalles Bibliográficos
Autores: Alves Pereira, Marcos Antonio, Blas Achic, Betsabé Grimalda
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/2003
Enlace del recurso:https://revistas.uni.edu.pe/index.php/iecos/article/view/2003
Nivel de acceso:acceso abierto
Materia:Modelo de regresión binaria
error de tipo Berkson
error de clasificación
Distribución t-Student
Binary regression model
Berkson-type error
misclassification
Student-t distribution
Descripción
Sumario:In this article, we introduce a regression model tailored for fitting binary data affected by misclassification in the response variable and Berkson-type measurement error in the covariate. The conventional assumption of a normal distribution for measurement error may inadequately represent atypical observations present in the dataset. To address this limitation, our model incorporates misclassification in the response variable and Berksontype measurement error, employing the Student-t distribution for more robust modeling of these atypical observations. We utilize the cumulative distribution function from the Student-t distribution as the link function, enhancing our ability to capture the dataset’s unique characteristics. Model parameters are estimated via the maximum likelihood method. We conduct a comprehensive Monte Carlo simulation study to thoroughly assess the impact of measurement errors and misclassification. Additionally, we apply the proposed model to a real-world dataset of survivors from the atomic bombing in Japan, showcasing its adaptability and suitability in practical scenarios. Our findings highlight the robustness and flexibility of this model in effectively handling complex binary regression scenarios involving measurement errors and misclassification.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).