Binary regression model with misclassification and Berkson-type measurement error with student-t distribution
Descripción del Articulo
In this article, we introduce a regression model tailored for fitting binary data affected by misclassification in the response variable and Berkson-type measurement error in the covariate. The conventional assumption of a normal distribution for measurement error may inadequately represent atypical...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | Revistas - Universidad Nacional de Ingeniería |
Lenguaje: | español |
OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/2003 |
Enlace del recurso: | https://revistas.uni.edu.pe/index.php/iecos/article/view/2003 |
Nivel de acceso: | acceso abierto |
Materia: | Modelo de regresión binaria error de tipo Berkson error de clasificación Distribución t-Student Binary regression model Berkson-type error misclassification Student-t distribution |
Sumario: | In this article, we introduce a regression model tailored for fitting binary data affected by misclassification in the response variable and Berkson-type measurement error in the covariate. The conventional assumption of a normal distribution for measurement error may inadequately represent atypical observations present in the dataset. To address this limitation, our model incorporates misclassification in the response variable and Berksontype measurement error, employing the Student-t distribution for more robust modeling of these atypical observations. We utilize the cumulative distribution function from the Student-t distribution as the link function, enhancing our ability to capture the dataset’s unique characteristics. Model parameters are estimated via the maximum likelihood method. We conduct a comprehensive Monte Carlo simulation study to thoroughly assess the impact of measurement errors and misclassification. Additionally, we apply the proposed model to a real-world dataset of survivors from the atomic bombing in Japan, showcasing its adaptability and suitability in practical scenarios. Our findings highlight the robustness and flexibility of this model in effectively handling complex binary regression scenarios involving measurement errors and misclassification. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).