Prediction of solid household waste generation with machine learning in a rural area of Puno
Descripción del Articulo
Solid waste management is one of the main environmental challenges in cities around the world due to factors such as population growth and consumption habits. One of the main tools for the design of waste management projects is the estimation of per capita generation, however, the traditional method...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | Revistas - Universidad Nacional de Ingeniería |
Lenguaje: | español |
OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/1378 |
Enlace del recurso: | https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378 |
Nivel de acceso: | acceso abierto |
Materia: | Desperdicios Factor social Algoritmos de machine learning Gestión Suburbios Domicilio Waste Social factor Machine learning algorithms Management Suburbs Domicile |
id |
REVUNI_1a97dabb66a5afcacfd41352da5bfb63 |
---|---|
oai_identifier_str |
oai:oai:revistas.uni.edu.pe:article/1378 |
network_acronym_str |
REVUNI |
network_name_str |
Revistas - Universidad Nacional de Ingeniería |
repository_id_str |
|
dc.title.none.fl_str_mv |
Prediction of solid household waste generation with machine learning in a rural area of Puno Predicción de la generación de residuos sólidos domiciliarios con machine learning en una zona rural de Puno |
title |
Prediction of solid household waste generation with machine learning in a rural area of Puno |
spellingShingle |
Prediction of solid household waste generation with machine learning in a rural area of Puno Cerna Cueva, Alberto Franco Desperdicios Factor social Algoritmos de machine learning Gestión Suburbios Domicilio Waste Social factor Machine learning algorithms Management Suburbs Domicile |
title_short |
Prediction of solid household waste generation with machine learning in a rural area of Puno |
title_full |
Prediction of solid household waste generation with machine learning in a rural area of Puno |
title_fullStr |
Prediction of solid household waste generation with machine learning in a rural area of Puno |
title_full_unstemmed |
Prediction of solid household waste generation with machine learning in a rural area of Puno |
title_sort |
Prediction of solid household waste generation with machine learning in a rural area of Puno |
dc.creator.none.fl_str_mv |
Cerna Cueva, Alberto Franco Rosas Echevarría, Cesar Wilfredo Perales Flores, Roberto Sixto Ataucusi Flores, Pierina Lisbeth |
author |
Cerna Cueva, Alberto Franco |
author_facet |
Cerna Cueva, Alberto Franco Rosas Echevarría, Cesar Wilfredo Perales Flores, Roberto Sixto Ataucusi Flores, Pierina Lisbeth |
author_role |
author |
author2 |
Rosas Echevarría, Cesar Wilfredo Perales Flores, Roberto Sixto Ataucusi Flores, Pierina Lisbeth |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Desperdicios Factor social Algoritmos de machine learning Gestión Suburbios Domicilio Waste Social factor Machine learning algorithms Management Suburbs Domicile |
topic |
Desperdicios Factor social Algoritmos de machine learning Gestión Suburbios Domicilio Waste Social factor Machine learning algorithms Management Suburbs Domicile |
description |
Solid waste management is one of the main environmental challenges in cities around the world due to factors such as population growth and consumption habits. One of the main tools for the design of waste management projects is the estimation of per capita generation, however, the traditional method to obtain this information demands a lot of effort and time, therefore this research proposes an alternative approach to estimate per capita generation based on socioeconomic factors. For this purpose, socioeconomic demographic information and information on the per capita generation of solid waste of 50 families was collected, subsequently the variables that have significant influence were determined from the correlation coefficient ρ of Spearman for numerical variables and an ANOVA for categorical variables with an acceptance threshold of 0.4 and 0.05 respectively. The selected variables were used to train the neural network, multiple linear regression, support vector machine, Gaussian process and random forest models, whose performances were R2 = 0.986, 0.982, 0.959, 0.837, 0.832; respectively. Cross validation and data partitioning were used for validation. The results indicate that the influential variables are per capita income, expenditure on supplies and products, family size and household services. It is concluded that the predictions of the models are reliable (RMSE from 8g to 27g) and from them projects can be designed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Environmental engineering Ingeniería Ambiental |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378 10.21754/tecnia.v32i1.1378 |
url |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378 |
identifier_str_mv |
10.21754/tecnia.v32i1.1378 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378/1912 |
dc.rights.none.fl_str_mv |
Derechos de autor 2022 TECNIA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2022 TECNIA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
dc.source.none.fl_str_mv |
TECNIA; Vol. 32 No. 1 (2022); 44-52 TECNIA; Vol. 32 Núm. 1 (2022); 44-52 2309-0413 0375-7765 10.21754/tecnia.v32i1 reponame:Revistas - Universidad Nacional de Ingeniería instname:Universidad Nacional de Ingeniería instacron:UNI |
instname_str |
Universidad Nacional de Ingeniería |
instacron_str |
UNI |
institution |
UNI |
reponame_str |
Revistas - Universidad Nacional de Ingeniería |
collection |
Revistas - Universidad Nacional de Ingeniería |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1838636206688043008 |
spelling |
Prediction of solid household waste generation with machine learning in a rural area of PunoPredicción de la generación de residuos sólidos domiciliarios con machine learning en una zona rural de PunoCerna Cueva, Alberto FrancoRosas Echevarría, Cesar WilfredoPerales Flores, Roberto SixtoAtaucusi Flores, Pierina LisbethDesperdiciosFactor socialAlgoritmos de machine learningGestiónSuburbiosDomicilioWasteSocial factorMachine learning algorithmsManagementSuburbsDomicileSolid waste management is one of the main environmental challenges in cities around the world due to factors such as population growth and consumption habits. One of the main tools for the design of waste management projects is the estimation of per capita generation, however, the traditional method to obtain this information demands a lot of effort and time, therefore this research proposes an alternative approach to estimate per capita generation based on socioeconomic factors. For this purpose, socioeconomic demographic information and information on the per capita generation of solid waste of 50 families was collected, subsequently the variables that have significant influence were determined from the correlation coefficient ρ of Spearman for numerical variables and an ANOVA for categorical variables with an acceptance threshold of 0.4 and 0.05 respectively. The selected variables were used to train the neural network, multiple linear regression, support vector machine, Gaussian process and random forest models, whose performances were R2 = 0.986, 0.982, 0.959, 0.837, 0.832; respectively. Cross validation and data partitioning were used for validation. The results indicate that the influential variables are per capita income, expenditure on supplies and products, family size and household services. It is concluded that the predictions of the models are reliable (RMSE from 8g to 27g) and from them projects can be designed.La gestión de residuos sólidos es uno de los principales desafíos ambientales en todas las ciudades del mundo debido a factores como el crecimiento poblacional y los hábitos de consumo. Una de las principales herramientas para el diseño de proyectos de gestión de residuos, es la estimación de la generación per cápita, sin embargo, el método tradicional para obtener esta información demanda mucho esfuerzo y tiempo, por ello esta investigación plantea un enfoque alternativo de la estimación de la generación per cápita a partir de factores socioeconómicos. Para ello se recogió información socio económica demográfica e información sobre la generación per cápita de residuos sólidos de 50 familias, posteriormente se determinaron las variables que tienen influencia significativa a partir del coeficiente de correlación ρ de Spearman para las variables numéricas y un ANOVA para las variables categóricas con un umbral de aceptación de 0.4 y 0.05 respectivamente. Las variables seleccionadas se utilizaron para entrenar los modelos de redes neuronales, regresión lineal múltiple, support vector machine, procesos gaussianos y random forest, cuyos desempeños fueron de R2 = 0.986, 0.982, 0.959, 0.837, 0.832; respectivamente. Para la validación se utilizó validación cruzada y partición de datos. Los resultados indican que las variables influyentes son el ingreso per cápita, el gasto en insumos y productos, el tamaño familiar y los servicios del hogar. Se concluye que las predicciones de los modelos son confiables (RMSE desde 8g a 27g) y a partir de ellas se pueden diseñar proyectos.Universidad Nacional de Ingeniería2022-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEnvironmental engineeringIngeniería Ambientalapplication/pdfhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/137810.21754/tecnia.v32i1.1378TECNIA; Vol. 32 No. 1 (2022); 44-52TECNIA; Vol. 32 Núm. 1 (2022); 44-522309-04130375-776510.21754/tecnia.v32i1reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/1378/1912Derechos de autor 2022 TECNIAinfo:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/13782025-07-15T00:10:25Z |
score |
13.448595 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).