Prediction of solid household waste generation with machine learning in a rural area of Puno

Descripción del Articulo

Solid waste management is one of the main environmental challenges in cities around the world due to factors such as population growth and consumption habits. One of the main tools for the design of waste management projects is the estimation of per capita generation, however, the traditional method...

Descripción completa

Detalles Bibliográficos
Autores: Cerna Cueva, Alberto Franco, Rosas Echevarría, Cesar Wilfredo, Perales Flores, Roberto Sixto, Ataucusi Flores, Pierina Lisbeth
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/1378
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378
Nivel de acceso:acceso abierto
Materia:Desperdicios
Factor social
Algoritmos de machine learning
Gestión
Suburbios
Domicilio
Waste
Social factor
Machine learning algorithms
Management
Suburbs
Domicile
id REVUNI_1a97dabb66a5afcacfd41352da5bfb63
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/1378
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
dc.title.none.fl_str_mv Prediction of solid household waste generation with machine learning in a rural area of Puno
Predicción de la generación de residuos sólidos domiciliarios con machine learning en una zona rural de Puno
title Prediction of solid household waste generation with machine learning in a rural area of Puno
spellingShingle Prediction of solid household waste generation with machine learning in a rural area of Puno
Cerna Cueva, Alberto Franco
Desperdicios
Factor social
Algoritmos de machine learning
Gestión
Suburbios
Domicilio
Waste
Social factor
Machine learning algorithms
Management
Suburbs
Domicile
title_short Prediction of solid household waste generation with machine learning in a rural area of Puno
title_full Prediction of solid household waste generation with machine learning in a rural area of Puno
title_fullStr Prediction of solid household waste generation with machine learning in a rural area of Puno
title_full_unstemmed Prediction of solid household waste generation with machine learning in a rural area of Puno
title_sort Prediction of solid household waste generation with machine learning in a rural area of Puno
dc.creator.none.fl_str_mv Cerna Cueva, Alberto Franco
Rosas Echevarría, Cesar Wilfredo
Perales Flores, Roberto Sixto
Ataucusi Flores, Pierina Lisbeth
author Cerna Cueva, Alberto Franco
author_facet Cerna Cueva, Alberto Franco
Rosas Echevarría, Cesar Wilfredo
Perales Flores, Roberto Sixto
Ataucusi Flores, Pierina Lisbeth
author_role author
author2 Rosas Echevarría, Cesar Wilfredo
Perales Flores, Roberto Sixto
Ataucusi Flores, Pierina Lisbeth
author2_role author
author
author
dc.subject.none.fl_str_mv Desperdicios
Factor social
Algoritmos de machine learning
Gestión
Suburbios
Domicilio
Waste
Social factor
Machine learning algorithms
Management
Suburbs
Domicile
topic Desperdicios
Factor social
Algoritmos de machine learning
Gestión
Suburbios
Domicilio
Waste
Social factor
Machine learning algorithms
Management
Suburbs
Domicile
description Solid waste management is one of the main environmental challenges in cities around the world due to factors such as population growth and consumption habits. One of the main tools for the design of waste management projects is the estimation of per capita generation, however, the traditional method to obtain this information demands a lot of effort and time, therefore this research proposes an alternative approach to estimate per capita generation based on socioeconomic factors. For this purpose, socioeconomic demographic information and information on the per capita generation of solid waste of 50 families was collected, subsequently the variables that have significant influence were determined from the correlation coefficient ρ of Spearman for numerical variables and an ANOVA for categorical variables with an acceptance threshold of 0.4 and 0.05 respectively. The selected variables were used to train the neural network, multiple linear regression, support vector machine, Gaussian process and random forest models, whose performances were R2 = 0.986, 0.982, 0.959, 0.837, 0.832; respectively. Cross validation and data partitioning were used for validation. The results indicate that the influential variables are per capita income, expenditure on supplies and products, family size and household services. It is concluded that the predictions of the models are reliable (RMSE from 8g to 27g) and from them projects can be designed.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Environmental engineering
Ingeniería Ambiental
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378
10.21754/tecnia.v32i1.1378
url https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378
identifier_str_mv 10.21754/tecnia.v32i1.1378
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/1378/1912
dc.rights.none.fl_str_mv Derechos de autor 2022 TECNIA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 TECNIA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv TECNIA; Vol. 32 No. 1 (2022); 44-52
TECNIA; Vol. 32 Núm. 1 (2022); 44-52
2309-0413
0375-7765
10.21754/tecnia.v32i1
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1838636206688043008
spelling Prediction of solid household waste generation with machine learning in a rural area of PunoPredicción de la generación de residuos sólidos domiciliarios con machine learning en una zona rural de PunoCerna Cueva, Alberto FrancoRosas Echevarría, Cesar WilfredoPerales Flores, Roberto SixtoAtaucusi Flores, Pierina LisbethDesperdiciosFactor socialAlgoritmos de machine learningGestiónSuburbiosDomicilioWasteSocial factorMachine learning algorithmsManagementSuburbsDomicileSolid waste management is one of the main environmental challenges in cities around the world due to factors such as population growth and consumption habits. One of the main tools for the design of waste management projects is the estimation of per capita generation, however, the traditional method to obtain this information demands a lot of effort and time, therefore this research proposes an alternative approach to estimate per capita generation based on socioeconomic factors. For this purpose, socioeconomic demographic information and information on the per capita generation of solid waste of 50 families was collected, subsequently the variables that have significant influence were determined from the correlation coefficient ρ of Spearman for numerical variables and an ANOVA for categorical variables with an acceptance threshold of 0.4 and 0.05 respectively. The selected variables were used to train the neural network, multiple linear regression, support vector machine, Gaussian process and random forest models, whose performances were R2 = 0.986, 0.982, 0.959, 0.837, 0.832; respectively. Cross validation and data partitioning were used for validation. The results indicate that the influential variables are per capita income, expenditure on supplies and products, family size and household services. It is concluded that the predictions of the models are reliable (RMSE from 8g to 27g) and from them projects can be designed.La gestión de residuos sólidos es uno de los principales desafíos ambientales en todas las ciudades del mundo debido a factores como el crecimiento poblacional y los hábitos de consumo. Una de las principales herramientas para el diseño de proyectos de gestión de residuos, es la estimación de la generación per cápita, sin embargo, el método tradicional para obtener esta información demanda mucho esfuerzo y tiempo, por ello esta investigación plantea un enfoque alternativo de la estimación de la generación per cápita a partir de factores socioeconómicos. Para ello se recogió información socio económica demográfica e información sobre la generación per cápita de residuos sólidos de 50 familias, posteriormente se determinaron las variables que tienen influencia significativa a partir del coeficiente de correlación ρ de Spearman para las variables numéricas y un ANOVA para las variables categóricas con un umbral de aceptación de 0.4 y 0.05 respectivamente. Las variables seleccionadas se utilizaron para entrenar los modelos de redes neuronales, regresión lineal múltiple, support vector machine, procesos gaussianos y random forest, cuyos desempeños fueron de R2 = 0.986, 0.982, 0.959, 0.837, 0.832; respectivamente. Para la validación se utilizó validación cruzada y partición de datos. Los resultados indican que las variables influyentes son el ingreso per cápita, el gasto en insumos y productos, el tamaño familiar y los servicios del hogar. Se concluye que las predicciones de los modelos son confiables (RMSE desde 8g a 27g) y a partir de ellas se pueden diseñar proyectos.Universidad Nacional de Ingeniería2022-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEnvironmental engineeringIngeniería Ambientalapplication/pdfhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/137810.21754/tecnia.v32i1.1378TECNIA; Vol. 32 No. 1 (2022); 44-52TECNIA; Vol. 32 Núm. 1 (2022); 44-522309-04130375-776510.21754/tecnia.v32i1reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/1378/1912Derechos de autor 2022 TECNIAinfo:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/13782025-07-15T00:10:25Z
score 13.448595
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).