The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
Descripción del Articulo
ChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with users (Apple's Siri, Amazon's Alexa, Google's Assistant and Bard, Microsoft's Cortana, IBM's Watson, Bixby from Samsung, among others...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5098 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098 |
| Nivel de acceso: | acceso abierto |
| Materia: | autoregressive language model deep learning text production data mining text mining artificial intelligence chatbot modelo de lenguaje autorregresivo aprendizaje profundo producción de textos minería de texto minería de datos inteligencia artificial |
| id |
REVUNITRU_f1d851043d34f1a9ca56a733011b4549 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5098 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock El modelo de lenguaje basado en inteligencia artificial sensible - ChatGPT: Análisis bibliométrico y posibles usos en la agricultura y pecuaria |
| title |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock |
| spellingShingle |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock Siche, Raúl autoregressive language model deep learning text production data mining text mining artificial intelligence chatbot modelo de lenguaje autorregresivo aprendizaje profundo producción de textos minería de texto minería de datos inteligencia artificial chatbot |
| title_short |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock |
| title_full |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock |
| title_fullStr |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock |
| title_full_unstemmed |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock |
| title_sort |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock |
| dc.creator.none.fl_str_mv |
Siche, Raúl Siche, Nikol |
| author |
Siche, Raúl |
| author_facet |
Siche, Raúl Siche, Nikol |
| author_role |
author |
| author2 |
Siche, Nikol |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
autoregressive language model deep learning text production data mining text mining artificial intelligence chatbot modelo de lenguaje autorregresivo aprendizaje profundo producción de textos minería de texto minería de datos inteligencia artificial chatbot |
| topic |
autoregressive language model deep learning text production data mining text mining artificial intelligence chatbot modelo de lenguaje autorregresivo aprendizaje profundo producción de textos minería de texto minería de datos inteligencia artificial chatbot |
| description |
ChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with users (Apple's Siri, Amazon's Alexa, Google's Assistant and Bard, Microsoft's Cortana, IBM's Watson, Bixby from Samsung, among others). ChatGPT works using OpenAI's GPT (Generative Pretrained Transformer) language model and is capable of learning from users' preferences and behavior patterns to customize its response. ChatGPT has the potential to be applied in different fields, including education, journalism, scientific writing, communication, cell biology, and biotechnology, where there is already evidence. The aim of this work was to analyze the possible applications of ChatGPT in the agricultural and livestock industry. First, a scientometric analysis was performed with VosViewer and Bibliometrix (Bliblioshiny). 3 clusters were identified: (a) Main characteristics; (b) learning systems you use; and (c) applications. To the question: What are the main applications in which ChatGTP will revolutionize agriculture (or livestock) in the world? ChatGPT responded: (a) in the agricultural field: improvement of agricultural decision-making, optimization of agricultural production, detection and prevention of plant diseases, climate management, and supply chain management; and (b) in the livestock field: improvement of animal health and welfare, optimization of animal production, supply chain management, detection and prevention of zoonotic diseases, and climate management for animal production. ChatGPT does not scientifically support its answer, but from the analysis carried out, we find that there is enough scientific evidence to conclude, in this case, that its answers were correct. While ChatGPT does not necessarily scientifically substantiate its answers, users should. There is a lack of studies on the use of Artificial Intelligence and its relationship with ethics. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-03-17 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098 |
| url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/6682 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5296 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5432 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2023 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2023 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html application/pdf application/x-rar |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 14 Núm. 1 (2023): Enero-Marzo; 111-116 Scientia Agropecuaria; Vol. 14 No. 1 (2023): Enero-Marzo; 111-116 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846521097717022720 |
| spelling |
The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestockEl modelo de lenguaje basado en inteligencia artificial sensible - ChatGPT: Análisis bibliométrico y posibles usos en la agricultura y pecuariaSiche, Raúl Siche, Nikol autoregressive language modeldeep learningtext productiondata miningtext miningartificial intelligencechatbotmodelo de lenguaje autorregresivoaprendizaje profundoproducción de textosminería de textominería de datosinteligencia artificialchatbotChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with users (Apple's Siri, Amazon's Alexa, Google's Assistant and Bard, Microsoft's Cortana, IBM's Watson, Bixby from Samsung, among others). ChatGPT works using OpenAI's GPT (Generative Pretrained Transformer) language model and is capable of learning from users' preferences and behavior patterns to customize its response. ChatGPT has the potential to be applied in different fields, including education, journalism, scientific writing, communication, cell biology, and biotechnology, where there is already evidence. The aim of this work was to analyze the possible applications of ChatGPT in the agricultural and livestock industry. First, a scientometric analysis was performed with VosViewer and Bibliometrix (Bliblioshiny). 3 clusters were identified: (a) Main characteristics; (b) learning systems you use; and (c) applications. To the question: What are the main applications in which ChatGTP will revolutionize agriculture (or livestock) in the world? ChatGPT responded: (a) in the agricultural field: improvement of agricultural decision-making, optimization of agricultural production, detection and prevention of plant diseases, climate management, and supply chain management; and (b) in the livestock field: improvement of animal health and welfare, optimization of animal production, supply chain management, detection and prevention of zoonotic diseases, and climate management for animal production. ChatGPT does not scientifically support its answer, but from the analysis carried out, we find that there is enough scientific evidence to conclude, in this case, that its answers were correct. While ChatGPT does not necessarily scientifically substantiate its answers, users should. There is a lack of studies on the use of Artificial Intelligence and its relationship with ethics. ChatGPT su suma a la lista de sistemas basados en inteligencia artificial diseñados para realizar tareas específicas y responder preguntas mediante la interacción con los usuarios (Siri de Apple, Alexa de Amazon, Assistant y Bard de Google, Cortana de Microsoft, Watson de IBM, Bixby de Samsung, entre otros). ChatGPT funciona utilizando el modelo de lenguaje GPT (Transformador Preentrenado Generativo) de OpenAI y es capaz de aprender de las preferencias y patrones de comportamiento de los usuarios para personalizar su respuesta. ChatGPT tiene el potencial de ser aplicado en diferentes ámbitos, siendo la educación, periodismo, redacción científica, comunicación, biología celular, biotecnología, donde ya existen evidencias. El objetivo de este trabajo fue analizar las posibles aplicaciones de ChatGPT en la industria agrícola y pecuaria. En primer lugar, fue realizado un análisis cenciométrico con VosViewer y Bibliometrix (Bliblioshiny). Se identificaron 3 clústeres: (a) Característica principales; (b) sistemas de aprendizaje que utiliza; y (c) aplicaciones. A la pregunta ¿Cuáles son las principales aplicaciones en que ChatGTP revolucionará la agricultura (o pecuaria) en el mundo? ChatGPT respondió: (a) en el ámbito agrícola: mejora de la toma de decisiones agrícolas, optimización de la producción agrícola, detección y prevención de enfermedades de las plantas, gestión del clima y gestión de la cadena de suministro; y (b) en el campo pecuario: mejora de la salud y el bienestar animal, optimización de la producción animal, gestión de la cadena de suministro, detección y prevención de enfermedades zoonóticas y gestión del clima para la producción animal. ChatGPT no fundamenta científicamente su respuesta, pero del análisis realizado, encontramos que existe suficiente evidencia científica para concluir, en este caso, que sus respuestas fueron correctas. Si bien ChatGPT no necesariamente fundamenta científicamente sus respuestas, los usuarios deberían hacerlo. Faltan estudios del uso de la Inteligencia Artificial y su relación con la ética. Universidad Nacional de Trujillo2023-03-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfapplication/x-rarhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098Scientia Agropecuaria; Vol. 14 Núm. 1 (2023): Enero-Marzo; 111-116Scientia Agropecuaria; Vol. 14 No. 1 (2023): Enero-Marzo; 111-1162306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/6682https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5296https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5432Derechos de autor 2023 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/50982023-03-23T01:18:50Z |
| score |
13.088951 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).