The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock

Descripción del Articulo

ChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with users (Apple's Siri, Amazon's Alexa, Google's Assistant and Bard, Microsoft's Cortana, IBM's Watson, Bixby from Samsung, among others...

Descripción completa

Detalles Bibliográficos
Autores: Siche, Raúl, Siche, Nikol
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5098
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098
Nivel de acceso:acceso abierto
Materia:autoregressive language model
deep learning
text production
data mining
text mining
artificial intelligence
chatbot
modelo de lenguaje autorregresivo
aprendizaje profundo
producción de textos
minería de texto
minería de datos
inteligencia artificial
id REVUNITRU_f1d851043d34f1a9ca56a733011b4549
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5098
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
El modelo de lenguaje basado en inteligencia artificial sensible - ChatGPT: Análisis bibliométrico y posibles usos en la agricultura y pecuaria
title The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
spellingShingle The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
Siche, Raúl
autoregressive language model
deep learning
text production
data mining
text mining
artificial intelligence
chatbot
modelo de lenguaje autorregresivo
aprendizaje profundo
producción de textos
minería de texto
minería de datos
inteligencia artificial
chatbot
title_short The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
title_full The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
title_fullStr The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
title_full_unstemmed The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
title_sort The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock
dc.creator.none.fl_str_mv Siche, Raúl
Siche, Nikol
author Siche, Raúl
author_facet Siche, Raúl
Siche, Nikol
author_role author
author2 Siche, Nikol
author2_role author
dc.subject.none.fl_str_mv autoregressive language model
deep learning
text production
data mining
text mining
artificial intelligence
chatbot
modelo de lenguaje autorregresivo
aprendizaje profundo
producción de textos
minería de texto
minería de datos
inteligencia artificial
chatbot
topic autoregressive language model
deep learning
text production
data mining
text mining
artificial intelligence
chatbot
modelo de lenguaje autorregresivo
aprendizaje profundo
producción de textos
minería de texto
minería de datos
inteligencia artificial
chatbot
description ChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with users (Apple's Siri, Amazon's Alexa, Google's Assistant and Bard, Microsoft's Cortana, IBM's Watson, Bixby from Samsung, among others). ChatGPT works using OpenAI's GPT (Generative Pretrained Transformer) language model and is capable of learning from users' preferences and behavior patterns to customize its response. ChatGPT has the potential to be applied in different fields, including education, journalism, scientific writing, communication, cell biology, and biotechnology, where there is already evidence. The aim of this work was to analyze the possible applications of ChatGPT in the agricultural and livestock industry. First, a scientometric analysis was performed with VosViewer and Bibliometrix (Bliblioshiny). 3 clusters were identified: (a) Main characteristics; (b) learning systems you use; and (c) applications. To the question: What are the main applications in which ChatGTP will revolutionize agriculture (or livestock) in the world? ChatGPT responded: (a) in the agricultural field: improvement of agricultural decision-making, optimization of agricultural production, detection and prevention of plant diseases, climate management, and supply chain management; and (b) in the livestock field: improvement of animal health and welfare, optimization of animal production, supply chain management, detection and prevention of zoonotic diseases, and climate management for animal production. ChatGPT does not scientifically support its answer, but from the analysis carried out, we find that there is enough scientific evidence to conclude, in this case, that its answers were correct. While ChatGPT does not necessarily scientifically substantiate its answers, users should. There is a lack of studies on the use of Artificial Intelligence and its relationship with ethics. 
publishDate 2023
dc.date.none.fl_str_mv 2023-03-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/6682
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5296
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5432
dc.rights.none.fl_str_mv Derechos de autor 2023 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
application/x-rar
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 14 Núm. 1 (2023): Enero-Marzo; 111-116
Scientia Agropecuaria; Vol. 14 No. 1 (2023): Enero-Marzo; 111-116
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521097717022720
spelling The language model based on sensitive artificial intelligence - ChatGPT: Bibliometric analysis and possible uses in agriculture and livestockEl modelo de lenguaje basado en inteligencia artificial sensible - ChatGPT: Análisis bibliométrico y posibles usos en la agricultura y pecuariaSiche, Raúl Siche, Nikol autoregressive language modeldeep learningtext productiondata miningtext miningartificial intelligencechatbotmodelo de lenguaje autorregresivoaprendizaje profundoproducción de textosminería de textominería de datosinteligencia artificialchatbotChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with users (Apple's Siri, Amazon's Alexa, Google's Assistant and Bard, Microsoft's Cortana, IBM's Watson, Bixby from Samsung, among others). ChatGPT works using OpenAI's GPT (Generative Pretrained Transformer) language model and is capable of learning from users' preferences and behavior patterns to customize its response. ChatGPT has the potential to be applied in different fields, including education, journalism, scientific writing, communication, cell biology, and biotechnology, where there is already evidence. The aim of this work was to analyze the possible applications of ChatGPT in the agricultural and livestock industry. First, a scientometric analysis was performed with VosViewer and Bibliometrix (Bliblioshiny). 3 clusters were identified: (a) Main characteristics; (b) learning systems you use; and (c) applications. To the question: What are the main applications in which ChatGTP will revolutionize agriculture (or livestock) in the world? ChatGPT responded: (a) in the agricultural field: improvement of agricultural decision-making, optimization of agricultural production, detection and prevention of plant diseases, climate management, and supply chain management; and (b) in the livestock field: improvement of animal health and welfare, optimization of animal production, supply chain management, detection and prevention of zoonotic diseases, and climate management for animal production. ChatGPT does not scientifically support its answer, but from the analysis carried out, we find that there is enough scientific evidence to conclude, in this case, that its answers were correct. While ChatGPT does not necessarily scientifically substantiate its answers, users should. There is a lack of studies on the use of Artificial Intelligence and its relationship with ethics. ChatGPT su suma a la lista de sistemas basados en inteligencia artificial diseñados para realizar tareas específicas y responder preguntas mediante la interacción con los usuarios (Siri de Apple, Alexa de Amazon, Assistant y Bard de Google, Cortana de Microsoft, Watson de IBM, Bixby de Samsung, entre otros). ChatGPT funciona utilizando el modelo de lenguaje GPT (Transformador Preentrenado Generativo) de OpenAI y es capaz de aprender de las preferencias y patrones de comportamiento de los usuarios para personalizar su respuesta. ChatGPT tiene el potencial de ser aplicado en diferentes ámbitos, siendo la educación, periodismo, redacción científica, comunicación, biología celular, biotecnología, donde ya existen evidencias. El objetivo de este trabajo fue analizar las posibles aplicaciones de ChatGPT en la industria agrícola y pecuaria. En primer lugar, fue realizado un análisis cenciométrico con VosViewer y Bibliometrix (Bliblioshiny). Se identificaron 3 clústeres: (a) Característica principales; (b) sistemas de aprendizaje que utiliza; y (c) aplicaciones. A la pregunta ¿Cuáles son las principales aplicaciones en que ChatGTP revolucionará la agricultura (o pecuaria) en el mundo? ChatGPT respondió: (a) en el ámbito agrícola: mejora de la toma de decisiones agrícolas, optimización de la producción agrícola, detección y prevención de enfermedades de las plantas, gestión del clima y gestión de la cadena de suministro; y (b) en el campo pecuario: mejora de la salud y el bienestar animal, optimización de la producción animal, gestión de la cadena de suministro, detección y prevención de enfermedades zoonóticas y gestión del clima para la producción animal. ChatGPT no fundamenta científicamente su respuesta, pero del análisis realizado, encontramos que existe suficiente evidencia científica para concluir, en este caso, que sus respuestas fueron correctas. Si bien ChatGPT no necesariamente fundamenta científicamente sus respuestas, los usuarios deberían hacerlo. Faltan estudios del uso de la Inteligencia Artificial y su relación con la ética. Universidad Nacional de Trujillo2023-03-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfapplication/x-rarhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098Scientia Agropecuaria; Vol. 14 Núm. 1 (2023): Enero-Marzo; 111-116Scientia Agropecuaria; Vol. 14 No. 1 (2023): Enero-Marzo; 111-1162306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/6682https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5296https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5098/5432Derechos de autor 2023 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/50982023-03-23T01:18:50Z
score 13.088951
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).