A comprehensive review of the characterization of real numbers
Descripción del Articulo
The real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | portugués |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6160 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160 |
Nivel de acceso: | acceso abierto |
Materia: | Axioma do supremo sequencias de Cauchy corpo ordenado completo corpo Arquimediano Supremum axiom Cauchy sequences complete ordered field Archimedean field |
id |
REVUNITRU_ed649451213f07c2136b8f86e101734c |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6160 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
A comprehensive review of the characterization of real numbersUma revisao abrangente sobre a caracterizacao dos números reaisMartínez León, Víctor ArturoBloot, RodrigoLetícia de Oliveira, AnaAxioma do supremosequencias de Cauchycorpo ordenado completocorpo ArquimedianoSupremum axiomCauchy sequencescomplete ordered fieldArchimedean fieldThe real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In the present work, we present a comprehensive review on the construction and characterization of the real numbers field. The presentation focuses on the construction through Cauchy sequences of rational numbers. The notion of completeness is delimited differently from completeness when Dedekind’s cut construction is used. The results indicate Q and R Archimedean as a necessary condition for these two notions of completeness to be equivalent. To illustrate this, inspired by the work of Leon W. Cohen and Gertrude Ehrlich, we present an example of a Cauchy-complete non-Archimedean ordered field in which the supremum axiom is not equivalent to the nested intervals principle.Os números reais sao uma ferramenta fundamental para demonstracoes rigorosas de resultados do cálculo diferencial e integral. Mesmo após um século da sua formalizacao em bases sólidas, discussoes sobre a construcao deste corpo sao muitas vezes omitidas em cursos avancados como Análise Real. No presente trabalho, apresentamos uma revisao detalhada sobre a construcao e caracterizacao do corpo dos números reais. A apresentacao tem como foco a construcao por meio de sequencias de Cauchy de números racionais. A nocao de completude é delimitada de forma diferente da completude quando a construcao por cortes de Dedekind é utilizada. Os resultados indicam que a condicao de que Q e R sejam Arquimedianos é necessária para que estas duas nocoes de completude sejam equivalentes. Para ilustrar isso, inspirados no trabalho de Leon W. Cohen e Gertrude Ehrlich, apresentamos um exemplo de um corpo ordenado nao Arquimediano do tipo Cauchy-completo no qual o axioma do supremo nao é equivalente ao princípio dos intervalos encaixantes.National University of Trujillo - Academic Department of Mathematics2024-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 303 - 325Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 303 - 325Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 303 - 3252411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUporhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160/6263https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/61602024-12-28T04:55:24Z |
dc.title.none.fl_str_mv |
A comprehensive review of the characterization of real numbers Uma revisao abrangente sobre a caracterizacao dos números reais |
title |
A comprehensive review of the characterization of real numbers |
spellingShingle |
A comprehensive review of the characterization of real numbers Martínez León, Víctor Arturo Axioma do supremo sequencias de Cauchy corpo ordenado completo corpo Arquimediano Supremum axiom Cauchy sequences complete ordered field Archimedean field |
title_short |
A comprehensive review of the characterization of real numbers |
title_full |
A comprehensive review of the characterization of real numbers |
title_fullStr |
A comprehensive review of the characterization of real numbers |
title_full_unstemmed |
A comprehensive review of the characterization of real numbers |
title_sort |
A comprehensive review of the characterization of real numbers |
dc.creator.none.fl_str_mv |
Martínez León, Víctor Arturo Bloot, Rodrigo Letícia de Oliveira, Ana |
author |
Martínez León, Víctor Arturo |
author_facet |
Martínez León, Víctor Arturo Bloot, Rodrigo Letícia de Oliveira, Ana |
author_role |
author |
author2 |
Bloot, Rodrigo Letícia de Oliveira, Ana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Axioma do supremo sequencias de Cauchy corpo ordenado completo corpo Arquimediano Supremum axiom Cauchy sequences complete ordered field Archimedean field |
topic |
Axioma do supremo sequencias de Cauchy corpo ordenado completo corpo Arquimediano Supremum axiom Cauchy sequences complete ordered field Archimedean field |
description |
The real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In the present work, we present a comprehensive review on the construction and characterization of the real numbers field. The presentation focuses on the construction through Cauchy sequences of rational numbers. The notion of completeness is delimited differently from completeness when Dedekind’s cut construction is used. The results indicate Q and R Archimedean as a necessary condition for these two notions of completeness to be equivalent. To illustrate this, inspired by the work of Leon W. Cohen and Gertrude Ehrlich, we present an example of a Cauchy-complete non-Archimedean ordered field in which the supremum axiom is not equivalent to the nested intervals principle. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160 |
dc.language.none.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160/6263 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 303 - 325 Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 303 - 325 Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 303 - 325 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1844618545260920832 |
score |
13.4165325 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).