A comprehensive review of the characterization of real numbers

Descripción del Articulo

The real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In...

Descripción completa

Detalles Bibliográficos
Autores: Martínez León, Víctor Arturo, Bloot, Rodrigo, Letícia de Oliveira, Ana
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:portugués
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6160
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160
Nivel de acceso:acceso abierto
Materia:Axioma do supremo
sequencias de Cauchy
corpo ordenado completo
corpo Arquimediano
Supremum axiom
Cauchy sequences
complete ordered field
Archimedean field
id REVUNITRU_ed649451213f07c2136b8f86e101734c
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6160
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling A comprehensive review of the characterization of real numbersUma revisao abrangente sobre a caracterizacao dos números reaisMartínez León, Víctor ArturoBloot, RodrigoLetícia de Oliveira, AnaAxioma do supremosequencias de Cauchycorpo ordenado completocorpo ArquimedianoSupremum axiomCauchy sequencescomplete ordered fieldArchimedean fieldThe real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In the present work, we present a comprehensive review on the construction and characterization of the real numbers field. The presentation focuses on the construction through Cauchy sequences of rational numbers. The notion of completeness is delimited differently from completeness when Dedekind’s cut construction is used. The results indicate Q and R Archimedean as a necessary condition for these two notions of completeness to be equivalent. To illustrate this, inspired by the work of Leon W. Cohen and Gertrude Ehrlich, we present an example of a Cauchy-complete non-Archimedean ordered field in which the supremum axiom is not equivalent to the nested intervals principle.Os números reais sao uma ferramenta fundamental para demonstracoes rigorosas de resultados do cálculo diferencial e integral. Mesmo após um século da sua formalizacao em bases sólidas, discussoes sobre a construcao deste corpo sao muitas vezes omitidas em cursos avancados como Análise Real. No presente trabalho, apresentamos uma revisao detalhada sobre a construcao e caracterizacao do corpo dos números reais. A apresentacao tem como foco a construcao por meio de sequencias de Cauchy de números racionais. A nocao de completude é delimitada de forma diferente da completude quando a construcao por cortes de Dedekind é utilizada. Os resultados indicam que a condicao de que Q e R sejam Arquimedianos é necessária para que estas duas nocoes de completude sejam equivalentes. Para ilustrar isso, inspirados no trabalho de Leon W. Cohen e Gertrude Ehrlich, apresentamos um exemplo de um corpo ordenado nao Arquimediano do tipo Cauchy-completo no qual o axioma do supremo nao é equivalente ao princípio dos intervalos encaixantes.National University of Trujillo - Academic Department of Mathematics2024-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 303 - 325Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 303 - 325Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 303 - 3252411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUporhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160/6263https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/61602024-12-28T04:55:24Z
dc.title.none.fl_str_mv A comprehensive review of the characterization of real numbers
Uma revisao abrangente sobre a caracterizacao dos números reais
title A comprehensive review of the characterization of real numbers
spellingShingle A comprehensive review of the characterization of real numbers
Martínez León, Víctor Arturo
Axioma do supremo
sequencias de Cauchy
corpo ordenado completo
corpo Arquimediano
Supremum axiom
Cauchy sequences
complete ordered field
Archimedean field
title_short A comprehensive review of the characterization of real numbers
title_full A comprehensive review of the characterization of real numbers
title_fullStr A comprehensive review of the characterization of real numbers
title_full_unstemmed A comprehensive review of the characterization of real numbers
title_sort A comprehensive review of the characterization of real numbers
dc.creator.none.fl_str_mv Martínez León, Víctor Arturo
Bloot, Rodrigo
Letícia de Oliveira, Ana
author Martínez León, Víctor Arturo
author_facet Martínez León, Víctor Arturo
Bloot, Rodrigo
Letícia de Oliveira, Ana
author_role author
author2 Bloot, Rodrigo
Letícia de Oliveira, Ana
author2_role author
author
dc.subject.none.fl_str_mv Axioma do supremo
sequencias de Cauchy
corpo ordenado completo
corpo Arquimediano
Supremum axiom
Cauchy sequences
complete ordered field
Archimedean field
topic Axioma do supremo
sequencias de Cauchy
corpo ordenado completo
corpo Arquimediano
Supremum axiom
Cauchy sequences
complete ordered field
Archimedean field
description The real number system is a fundamental tool for rigorous demonstrations of the differential and integral calculus results. Even after a century of formalization on solid foundations, discussions about the construction of this field are generally omitted in advanced courses such as Real Analysis. In the present work, we present a comprehensive review on the construction and characterization of the real numbers field. The presentation focuses on the construction through Cauchy sequences of rational numbers. The notion of completeness is delimited differently from completeness when Dedekind’s cut construction is used. The results indicate Q and R Archimedean as a necessary condition for these two notions of completeness to be equivalent. To illustrate this, inspired by the work of Leon W. Cohen and Gertrude Ehrlich, we present an example of a Cauchy-complete non-Archimedean ordered field in which the supremum axiom is not equivalent to the nested intervals principle.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160
dc.language.none.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6160/6263
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 303 - 325
Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 303 - 325
Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 303 - 325
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844618545260920832
score 13.4165325
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).