Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification

Descripción del Articulo

Chia seeds are nutritious food because they have a high content of protein, polyunsaturated fatty acids (omega-3 and omega-6) and phenolic compounds. During storage, fatty acids are degraded, by oxidative and hydrolytic reactions, forming free fatty acids (FFA). In this work, we used Near Infrared H...

Descripción completa

Detalles Bibliográficos
Autores: Cruz-Tirado, J. P., Lopes de França, Pedro Renann, Fernandes Barbin, Douglas
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4332
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332
Nivel de acceso:acceso abierto
Materia:polyunsaturated fatty acids
machine learning
fuzzy c-means
oleaginous seeds
id REVUNITRU_e34148a656d7913aa2e6acc033cf5012
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4332
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantificationCruz-Tirado, J. P. Lopes de França, Pedro Renann Fernandes Barbin, Douglas polyunsaturated fatty acidsmachine learningfuzzy c-meansoleaginous seedsChia seeds are nutritious food because they have a high content of protein, polyunsaturated fatty acids (omega-3 and omega-6) and phenolic compounds. During storage, fatty acids are degraded, by oxidative and hydrolytic reactions, forming free fatty acids (FFA). In this work, we used Near Infrared Hyperspectral Imaging (NIR- HSI) and chemometrics to predict FFA acid value and fatty acids concentrations in chia seeds during storage. First, we explore the hyperspectral images by Fuzzy c-means (FCM), where it is possible to observe as chemical compounds are formed or degraded during storage. Second, PLSR models were developed to predict FFA value and fatty acids concentration. RPD values reached values higher then 2.0, indicating a good ability to estimate these chemical compounds, especially polyunsaturated fatty acids omega-3 and omega-6. Finally, NIR-hyperspectral imaging coupled with chemometrics allowed us to show the chemical degradation process of chia seeds during storage, mainly associated with polyunsaturated fatty acids degradation. Besides NIR-HSI showed to be a powerful technique to quantify the main fatty acids with high accuracy.Universidad Nacional de Trujillo2022-07-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332Scientia Agropecuaria; Vol. 13 Núm. 2 (2022): Abril - Junio; 167-173Scientia Agropecuaria; Vol. 13 No. 2 (2022): Abril - Junio; 167-1732306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332/4932https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332/6807Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/43322022-05-18T08:07:19Z
dc.title.none.fl_str_mv Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
title Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
spellingShingle Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
Cruz-Tirado, J. P.
polyunsaturated fatty acids
machine learning
fuzzy c-means
oleaginous seeds
title_short Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
title_full Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
title_fullStr Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
title_full_unstemmed Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
title_sort Chia (Salvia hispanica) seeds degradation studied by fuzzy-c mean (FCM) and hyperspectral imaging and chemometrics - fatty acids quantification
dc.creator.none.fl_str_mv Cruz-Tirado, J. P.
Lopes de França, Pedro Renann
Fernandes Barbin, Douglas
author Cruz-Tirado, J. P.
author_facet Cruz-Tirado, J. P.
Lopes de França, Pedro Renann
Fernandes Barbin, Douglas
author_role author
author2 Lopes de França, Pedro Renann
Fernandes Barbin, Douglas
author2_role author
author
dc.subject.none.fl_str_mv polyunsaturated fatty acids
machine learning
fuzzy c-means
oleaginous seeds
topic polyunsaturated fatty acids
machine learning
fuzzy c-means
oleaginous seeds
description Chia seeds are nutritious food because they have a high content of protein, polyunsaturated fatty acids (omega-3 and omega-6) and phenolic compounds. During storage, fatty acids are degraded, by oxidative and hydrolytic reactions, forming free fatty acids (FFA). In this work, we used Near Infrared Hyperspectral Imaging (NIR- HSI) and chemometrics to predict FFA acid value and fatty acids concentrations in chia seeds during storage. First, we explore the hyperspectral images by Fuzzy c-means (FCM), where it is possible to observe as chemical compounds are formed or degraded during storage. Second, PLSR models were developed to predict FFA value and fatty acids concentration. RPD values reached values higher then 2.0, indicating a good ability to estimate these chemical compounds, especially polyunsaturated fatty acids omega-3 and omega-6. Finally, NIR-hyperspectral imaging coupled with chemometrics allowed us to show the chemical degradation process of chia seeds during storage, mainly associated with polyunsaturated fatty acids degradation. Besides NIR-HSI showed to be a powerful technique to quantify the main fatty acids with high accuracy.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332/4932
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4332/6807
dc.rights.none.fl_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 13 Núm. 2 (2022): Abril - Junio; 167-173
Scientia Agropecuaria; Vol. 13 No. 2 (2022): Abril - Junio; 167-173
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521097616359424
score 13.08889
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).