Stability in Kolmogorov-type quadratic systems describing interactions among two species. A brief revision

Descripción del Articulo

Population dynamics is a relevant topic in Biomathematics, being the study of the long-term behavior of interaction models between species, one of its central problems. A large part of these relationships are described by ordinary differential equations (ODE), having as main objectives the study of...

Descripción completa

Detalles Bibliográficos
Autores: González-Olivares, Eduardo, Rojas-Palma, Alejandro
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3711
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3711
Nivel de acceso:acceso abierto
Materia:Modelo depredador-presa
respuesta funcional
ciclos
curva separatriz
estabilidad
función de Lyapunov
Predator-prey model
functional response
cycles
separatrix curve
stability
Lyapunov function
Descripción
Sumario:Population dynamics is a relevant topic in Biomathematics, being the study of the long-term behavior of interaction models between species, one of its central problems. A large part of these relationships are described by ordinary differential equations (ODE), having as main objectives the study of the stability of their solutions. In this document we mainly describe the dynamic behavior of the Volterra predation model. In addition, we make a review of some derived predation models and a brief review of the dynamical properties of models describing other interactions between species such as: competition, mutualism, amensalism, and commensalism; also described by nonlinear ODE systems of the second order of Kolmogorov-type. For each of these models, the non-existence of limit cycles can be demonstrated and in most of  them, there is a globally stable equilibrium point. In one of them, there are  conditions in the parameters for which the only positive equilibrium point is a center, as in the original Lotka-Volterra model.  The methodology used is the usual one for the analysis of models with hyperbolic equilibrium points, but it can guide the analysis of other more complicated models.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).